Answer: The ball (option A)
Explanation: change in momentum is defined by the formulae m(v - u) where m = mass of object, v = final velocity and u = initial velocity.
For the ball, it hits the ground and bounces back with the same speed, that's final velocity equals initials (v = - u)
Change in momentum = m( -u- u) = m(-2u) = m(-2u) = -2mu
For the clay, it final velocity is zero since it sticks to the floor, hence (v =0)
m(v - u) = m(0 - u) = - mu.
-2mu (change in momentum from the ball) is greater than - mu ( change in momentum of clay)
Answer:
Explanation:
ASSUMING your speed is constant
f₀ = f(v + vo)/(v + vs)
Δf = f approach - f depart
69.5 = (769(343 + vo)/(343 + 0)) - (769(343 - vo)/(343 + 0))
69.5 = 769(2vo/343)
vo = 15.5 m/s
The answer is true about the cabins in commercial airliners that require pressurization.
<h3>Why are the cabins of commercial airplanes pressurized?</h3>
Airplanes are pressurized because the air is very thin at the high altitude where they fly. The passenger jet has a cruising altitude of about 30,000 - 40,000 feet. At this altitude or height, humans can't breathe very well and our body gets less amount of oxygen. Most aircraft cabins are pressurized to an altitude about 8,000 feet. This is called cabin altitude. Aircraft pilots have access to the control's mode of a cabin pressure control system and if needed it can command the cabin to depressurize.
So we can conclude that cabins in commercial airliners require pressurization because of the greater pressure of the surrounding environment.
Learn more about pressure here: brainly.com/question/28012687
#SPJ1