Answer:
a) 4500 cycles b) 0.0667s c) 6.67s
Explanation:
a) 15 Hz= 15 cycles/ s
5 mins= 300s
15 cycles/s * 300s= 4500 cycles
b) Period= 1/ frequency
Period= 1/ 15 cycles/s
Period= 0.0667s
c) Period * number of revolutions= time
0.0667 * 100= 6.67s
Answer:
The final velocity of cart 1 is 3m/s
Explanation:
From principle of conservation of linear momentum, which states that sum of the momentum before collision is equal to the sum of the momentum after collision.
Momentum, P is given as mass x velocity.
ΔP = Δmv = m₁u₁ +m₂u₂ = m₁v₁ + m₂v₂
Assumptions:
- If the two carts are moving on frictionless track, then limiting frictional forces due to their weights are negligible.
- After the elastic collision, the two carts will move separately with different velocity
u₁ + u₂ = v₁ + v₂;
where;
u₁ and u₂ are the initial velocity for cart 1 and cart 2 respectively
v₁ and v₂ are the final velocity for cart 1 and cart 2 respectively
1 m/s + 5 m/s = v₁ + 3m/s
6 m/s = v₁ + 3m/s
v₁ = 6 m/s - 3m/s = 3m/s
Therefore, the final velocity of cart 1 is 3m/s
9.1 miles per hour because 2.2 is your hours right?
<h3><u>Answer;</u></h3>
Doubles and Remains the same
<h3><u>Explanation;</u></h3>
- The effect of doubling the absolute temperature of a sample of a monoatomic ideal gas is that,the pressure doubles and density of the sample of gas remains the same.
- <em><u>According to ideal gas equation; PV = nRT; Where P is pressure and V is the Volume, n is the number of moles, R is the ideal gas constant and T is the absolute temperature.</u></em>
- <em><u>Therefore, when the temperature of the mono atomic ideal gas is doubled, the pressure of the gas will also doubles.</u></em>
- However, in a closed chamber mass of the ideal gas is invariant, since density depends only on the mass and volume therefore the density of the ideal is gas will remain the same.