Answer:
Explanation:
The question relates to motion on a circular path .
Let the radius of the circular path be R .
The centripetal force for circular motion is provided by frictional force
frictional force is equal to μmg , where μ is coefficient of friction and mg is weight
Equating cenrtipetal force and frictionl force in the case of car A
mv² / R = μmg
R = v² /μg
= 26.8 x 26.8 / .335 x 9.8
= 218.77 m
In case of moton of car B
mv² / R = μmg
v² = μRg
= .683 x 218.77x 9.8
= 1464.35
v = 38.26 m /s .
The peak wavelength of Betelgeuse is 828 nm
Explanation:
The relationship between surface temperature and peak wavelength of a star is given by Wien's displacement law:

where
is the peak wavelength
T is the surface temperature
is Wien's constant
For Betelgeuse, the surface temperature is approximately
T = 3500 K
Therefore, its peak wavelength is:

Learn more about wavelength:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly
Levers
Most machines in your body are levers that consist of bones and muscles. Tendons and muscles pull on bones, making them act as levers. Joint, near where tendon is attached to bone acts as fulcrum. Muscles produce input force.
Answer:
(a) 1.054 m/s²
(b) 1.404 m/s²
Explanation:
0.5·m·g·cos(θ) - μs·m·g·(1 - sin(θ)) - μk·m·g·(1 - sin(θ)) = m·a
Which gives;
0.5·g·cos(θ) - μ·g·(1 - sin(θ) = a
Where:
m = Mass of the of the block
μ = Coefficient of friction
g = Acceleration due to gravity = 9.81 m/s²
a = Acceleration of the block
θ = Angle of elevation of the block = 20°
Therefore;
0.5×9.81·cos(20°) - μs×9.81×(1 - sin(20°) - μk×9.81×(1 - sin(20°) = a
(a) When the static friction μs = 0.610 and the dynamic friction μk = 0.500, we have;
0.5×9.81·cos(20°) - 0.610×9.81×(1 - sin(20°) - 0.500×9.81×(1 - sin(20°) = 1.054 m/s²
(b) When the static friction μs = 0.400 and the dynamic friction μk = 0.300, we have;
0.5×9.81·cos(20°) - 0.400×9.81×(1 - sin(20°) - 0.300×9.81×(1 - sin(20°) = 1.404 m/s².
There is no change in ocean water temperature when it is from the ocean surface to a depth of 1 km.