1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nutka1998 [239]
3 years ago
15

Seperate real and imaginary parts tan(2x+i3y)

Engineering
1 answer:
ahrayia [7]3 years ago
3 0

Answer:

First you have to separate real and imaginary parts of Tan(x+iy)=Tan(z)=sin(z)/cos(z)

sinz=sin(x+iy)=sinxcos(iy)+cosxsin(iy)=sinxcoshy-icosx sinhy

cosz=cos(x+iy)=cosxcos(iy)-sinxsin(iy)=cosxcoshy−isinxsinhy

Now if you plug in Tan(z) and simplify (it is easy!) you get

Tan(z)=(sin(2x)+isinh(2y))/(cos(2x)+cosh(2y))= A+iB.

This means that

A=sin(2x)/(cos(2x)+cosh(2y)) and B= sinh(2y)/(cos(2x)+cosh(2y))

Now,

A/B=sin(2x)/sinh(2y)

If any questions, let me know.

You might be interested in
Sea B = 5.00 m a 60.0°. Sea C que tiene la misma magnitud que A y un ángulo de dirección mayor que el de A en 25.0°. Sea A ⦁ B =
uranmaximum [27]

Answer:

\| \vec A \| = 6.163\,m

Explanation:

Sean A, B y C vectores coplanares tal que:

\vec A = (\| \vec A \|\cdot \cos \theta_{A},\| \vec A \|\cdot \sin \theta_{A}), \vec B = (\| \vec B \|\cdot \cos \theta_{B},\| \vec B \|\cdot \sin \theta_{B}) y \vec C = (\| \vec C \|\cdot \cos \theta_{C},\| \vec C \|\cdot \sin \theta_{C})

Donde \| \vec A \|, \| \vec B \| y \| \vec C \| son las normas o magnitudes respectivas de los vectores A, B y C, mientras que \theta_{A}, \theta_{B} y \theta_{C} son las direcciones respectivas de aquellos vectores, medidas en grados sexagesimales.

Por definición de producto escalar, se encuentra que:

\vec A \,\bullet\, \vec B = \|\vec A \| \| \vec B \| \cos \theta_{B}\cdot \cos \theta_{A} + \|\vec A \| \| \vec B \| \sin \theta_{B}\cdot \sin \theta_{A}

\vec B \,\bullet\, \vec C = \|\vec B \| \| \vec C \| \cos \theta_{B}\cdot \cos \theta_{C} + \|\vec B \| \| \vec C \| \sin \theta_{B}\cdot \sin \theta_{C}

Asimismo, se sabe que \| \vec B \| = 5\,m, \theta_{B} = 60^{\circ}, \vec A \,\bullet \,\vec B = 30\,m^{2}, \vec B\, \bullet\, \vec C = 35\,m^{2}, \|\vec A \| = \| \vec C \| y \theta_{C} = \theta_{A} + 25^{\circ}. Entonces, las ecuaciones quedan simplificadas como siguen:

30\,m^{2} = 5\|\vec A \| \cdot (\cos 60^{\circ}\cdot \cos \theta_{A} + \sin 60^{\circ}\cdot \sin \theta_{A})

35\,m^{2} = 5\|\vec A \| \cdot [\cos 60^{\circ}\cdot \cos (\theta_{A}+25^{\circ}) + \sin 60^{\circ}\cdot \sin (\theta_{A}+25^{\circ})]

Es decir,

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot \cos (\theta_{A}+25^{\circ})+4.330\cdot \sin (\theta_{A}+25^{\circ}})]

Luego, se aplica las siguientes identidades trigonométricas para sumas de ángulos:

\cos (\theta_{A}+25^{\circ}) = \cos \theta_{A}\cdot \cos 25^{\circ} - \sin \theta_{A}\cdot \sin 25^{\circ}

\sin (\theta_{A}+25^{\circ}) = \sin \theta_{A}\cdot \cos 25^{\circ} + \cos \theta_{A} \cdot \sin 25^{\circ}

Es decir,

\cos (\theta_{A}+25^{\circ}) = 0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A}

\sin (\theta_{A}+25^{\circ}) = 0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A}

Las nuevas expresiones son las siguientes:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot (0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A})+4.330\cdot (0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A})]

Ahora se simplifican las expresiones, se elimina la norma de \vec A y se desarrolla y simplifica la ecuación resultante:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot (4.097\cdot \cos \theta_{A} +2.865\cdot \sin \theta_{A})

\frac{30\,m^{2}}{2.5\cdot \cos \theta_{A}+ 4.330\cdot \sin \theta_{A}} = \frac{35\,m^{2}}{4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}}

30\cdot (4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}) = 35\cdot (2.5\cdot \cos \theta_{A}+4.330\cdot \sin \theta_{A})

122.91\cdot \cos \theta_{A} + 85.95\cdot \sin \theta_{A} = 87.5\cdot \cos \theta_{A} + 151.55\cdot \sin \theta_{A}

35.41\cdot \cos \theta_{A} = 65.6\cdot \sin \theta_{A}

\tan \theta_{A} = \frac{35.41}{65.6}

\tan \theta_{A} = 0.540

Ahora se determina el ángulo de \vec A:

\theta_{A} = \tan^{-1} \left(0.540\right)

La función tangente es positiva en el primer y tercer cuadrantes y tiene un periodicidad de 180 grados, entonces existen al menos dos soluciones del ángulo citado:

\theta_{A, 1} \approx 28.369^{\circ} y \theta_{A, 2} \approx 208.369^{\circ}

Ahora, la magnitud de \vec A es:

\| \vec A \| = \frac{35\,m^{2}}{4.097\cdot \cos 28.369^{\circ} + 2.865\cdot \sin 28.369^{\circ}}

\| \vec A \| = 6.163\,m

8 0
4 years ago
What is an isochoric process? b) Can heat be exchanged in an isochoric process? c) A 100L container holding an ideal gas at an i
oksano4ka [1.4K]

Answer:

a)A constant volume process is called isochoric process.

b)Yes

c)Work =0

Explanation:

Isochoric process:

 A constant volume process is called isochoric process.

In constant volume process work done on the system or work done by the system will remain zero .Because we know that work done give as

work = PΔV

Where P is pressure and ΔV is the change in volume.

For constant volume process ΔV = 0⇒ Work =0

Yes heat transfer can be take place in isochoric process.Because we know that temperature difference leads to transfer of heat.

Given that

Initial P=10 MPa

Final pressure =15 MPa

Volume = 100 L

Here volume of gas is constant so the work work done will be zero.

4 0
4 years ago
A satellite orbits the Earth every 2 hours at an average distance from the Earth's centre of 8000km. (i) What is the average ang
AlexFokin [52]

Answer:

i)ω=3600 rad/s

ii)V=7059.44 m/s

iii)F=1245.8 N

Explanation:

i)

We know that angular speed given as

\omega =\dfrac{d\theta}{dt}

We know that for one revolution

θ=2π

Given that time t= 2 hr

So

ω=θ/t

ω=2π/2 = π rad/hr

ω=3600 rad/s

ii)

Average speed V

V=\sqrt{\dfrac{GM}{R}}

Where M is the mass of earth.

R is the distance

G is the constant.

Now by putting the values

V=\sqrt{\dfrac{GM}{R}}

V=\sqrt{\dfrac{6.667\times 10^{-11}\times 5.98\times 10^{24}}{8000\times 10^3}}

V=7059.44 m/s

iii)

We know that centripetal fore given as

F=\dfrac{mV^2}{R}

Here given that m= 200 kg

R= 8000 km

so now by putting the values

F=\dfrac{mV^2}{R}

F=\dfrac{200\times 7059.44^2}{8000\times 10^3}

F=1245.8 N

3 0
3 years ago
Compare the output of full-wave rectifier with and without filter
lara31 [8.8K]

Answer:

Full wave rectification flips the negative half cycle of the sine wave to positive so the result is two positive half cycles.

Explanation:

hope it helps a lil

4 0
3 years ago
Inspections may be_____ or limited to a specific area such as electrical or plumbing
Nuetrik [128]
A is the answer for the sentence
4 0
3 years ago
Other questions:
  • If you know that the change in entropy of a system where heat was added is 12 J/K, and that the temperature of the system is 250
    10·1 answer
  • How does a vacuum carpet cleaner work?
    10·2 answers
  • 5.3-16 A professor recently received an unexpected $10 (a futile bribe attached to a test). Being the savvy investor that she is
    14·1 answer
  • The air inside a chamber at T[infinity],i = 50 °C is heated convectively with hᵢ= 20 W/m² K by a 200-mm-thick wall having a ther
    6·1 answer
  • A wood pole with a diameter of 10 in. has a moisture content of 5%. The fiber saturation point (FSP) for this wood is 30%. The w
    9·1 answer
  • Mr. Ray deposited $200,000 in the Old and Third National Bank. If the bank pays 8% interest, how much will he have in the accoun
    10·2 answers
  • Which of the following is the BEST definition for e-commerce? *
    13·1 answer
  • 11) If the evaporating pressure was 76 psig for r-22and the compressor inlet temperature was 65f, what would be the total superh
    13·1 answer
  • The compression ratio of most small gasoline engines falls between_______and________.
    13·2 answers
  • Technician A says that one function of oil is to clean. Technician B says that one function of oil is to cushion. Who is correct
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!