(a) Iron (iii) sulphate:
From the periodic table:
mass of iron = 55.845 grams
mass of sulphur = 32.065 grams
mass of oxygen = 16 grams
Iron (iii) sulphate has the formula: Fe2(SO4)3
molar mass = 2(55.845) + 3(32.065) + 3(4)(16) = 399.885 grams
(b) Sodium hydroxide:
From the periodic table:
mass of sodium = 22.989 grams
mass of oxygen = 16 grams
mass of hydrogen = 1 gram
Sodium hydroxide has the formula: NaOH
molar mass = 22.989 + 16 + 1 = 39.989 grams
(c) Barium carbonate
From the periodic table:
mass of barium = 137.327 grams
mass of carbon = 12 grams
mass of oxygen = 16 grams
Barium carbonate has the formula: BaCO3
molar mass = 137.327 + 12 + 3(16) = 197.327 grams
(d) ammonium nitrate:
From the periodic table:
mass of nitrogen = 14 grams
mass of hydrogen = 1 gram
mass of oxygen = 16 grams
Ammonium nitrate has the formula: NH4NO3
molar mass = 14 + 4(1) + 14 + 3(16) = 80 grams
(e) Lead (iv) oxide
From the periodic table:
mass of lead = 207.2 grams
mass of oxygen = 16 grams
Lead (iv) oxide has the formula: PbO2
molar mass = 207.2 + 2(16) = 239.2 grams
From the above calculations, we can see that:
Iron (iii) sulphate has the greatest mass.
Answer: 0.151
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.
Given:
Putting in the values we get:
Thus the rate of appearance of
is 0.151
It is codominant inheritance because, if the placement of the A and B molecules on each cell is controlled by the proteins that are coded by different versions of the same gene, then <span>IA and IB </span><span>are codominant but both are dominant to I<span>o</span>. If a person receives an <span>IA </span>allele and a <span>IB</span> allele, their blood type is type AB, in which characteristics of both A and B antigens are expressed.
</span>
The molar mass of CO2 can be calculated as follows;
CO2 — 12 + (16x2) = 12+ 32 = 44 g
Therefore molar mass of CO2 is 44 g/mol
In 44 g of CO2 there’s 1 mol of CO2
Then 1 g of CO2 there’s 1/44 mol of CO2
Therefore in 78.3 g of CO2 there’s — 1/44 x 78.3 =1.78 mol of CO2
H2SO3 or sulfurous acid is actually a strong acid. We know
for a fact that strong acids completely dissociate into its component ions in a
solution, that is:
<span>H2SO3 --> 2H+ + SO3-</span>
<span>So from the equation above, there are 2 moles of H+</span>