Answer:
Option (D)
Explanation:
Terrestrial planets refers to those four planets that are nearest to the sun and that lies within the asteroid belt. These planets are mainly composed of rocks or other metal objects that have a hard and resistant surface on it. They have a metal core that is molten (liquid) in nature, and atmosphere is relatively less dense, and also various geological features are present on it like the crater, volcanoes which can be observed with the help of satellites. The average densities of these planets is about four times the density of water. For example, the density of water is 1 g/cm³, whereas the density of earth is 5.5 g/cm³.
Thus, the correct answer is option (D).
1. Answer: components
A two dimensional vector can be divided into two parts called horizontal component and vertical component.
A three dimensional vector can be divided into three components: one along x-axis, one along y-axis and one along z-axis.
Hence, the vector parts that add up to the resultant are called components.
2. Answer: 5 miles.
The resultant distance along the straight line from the starting point to the end point would be the displacement.
The displacement would be equal to the magnitude of the hypotenuse formed in the right triangle.
Displacement, 
3. Answer: Scalar
A scalar quantity has only magnitude. For example, speed and distance are scalar quantities and can be normally added to find the total.
A vector quantity has both magnitude as well as direction. The components are summed according to vector addition rules. For example, velocity, acceleration, force etc.
Answer:
86.51° North of West or 273.49°
Explanation:
Let V' = velocity of boat relative to the earth, v = velocity of boat relative to water and V = velocity of water.
Now, by vector addition V' = V + v'.
Since v' = 6.10 m/s in the north direction, v' = (6.10 m/s)j and V = 100 m/s in the east direction, V = (100 m/s)i. So that
V' = V + v'
V' = (100 m/s)i + (6.10 m/s)j
So, we find the direction,Ф the boat must steer to from the components of V'.
So tanФ = 6.10 m/s ÷ 100 m/s
tanФ = 0.061
Ф = tan⁻¹(0.061) = 3.49°
So, the angle from the north is thus 90° - 3.49° = 86.51° North of West or 270° + 3.49° = 273.49°
In a moving car the outside looks to be moving. however if viewed from the outside, the car appears to be moving. so motion is relative to the person observing.
<span>Answer:
Therefore, x component: Tcos(24°) - f = 0 y component: N + Tsin(24°) - mg = 0 The two equations I get from this are: f = Tcos(24°) N = mg - Tsin(24°) In order for the crate to move, the friction force has to be greater than the normal force multiplied by the static coefficient, so... Tcos(24°) = 0.47 * (mg - Tsin(24°)) From all that I can get the equation I need for the tension, which, after some algebraic manipulation, yields: T = (mg * static coefficient) / (cos(24°) + sin(24°) * static coefficient) Then plugging in the values... T = 283.52.
Reference https://www.physicsforums.com/threads/difficulty-with-force-problems-involving-friction.111768/</span>