No, because mass is the amount of matter in something and weight is the pull of gravity on a object, for example you would weigh 65 pounds.. and have the mass of 1058..if you were in space your weight would change but your mass will always stay the same
Answer:
A = 5.727 cm
Explanation:
at time t = 0s the displacement of mass is 4.05 cm and velocity 4.12 m/s
we know that velcoity for simple harmonic motion is given as

W KNOW THAT

Therefore we get



A = 5.727 cm
This problem refers to a parallel plate capacitor. There is
an electric field between the two plates. The working equation to be used is
the Gauss’s Law which is
Electric field = Surface charge density / ε0
The answer is -2.52 μC/m2.
Answer:
let current flow be x
Explanation:
than we know potential difference = energy supply / charge then 120 = 10 /x then x=12 therefore pd = 12 v
Answer:
the speed of the car at the top of the vertical loop 
the magnitude of the normal force acting on the car at the top of the vertical loop 
Explanation:
Using the law of conservation of energy ;


The magnitude of the normal force acting on the car at the top of the vertical loop can be calculated as:
![F_{N} = \frac{mv^2_{top}}{R} \ - mg\\\\F_{N} = \frac{m(2.0 \sqrt{gR})^2}{R} \ - mg\\\\F_{N} = [(2.0^2-1]mg\\\\F_{N} = [(2.0)^2 -1) (50*10^{-3} \ kg)(9.8 \ m/s^2]\\\\](https://tex.z-dn.net/?f=F_%7BN%7D%20%3D%20%5Cfrac%7Bmv%5E2_%7Btop%7D%7D%7BR%7D%20%5C%20-%20mg%5C%5C%5C%5CF_%7BN%7D%20%3D%20%5Cfrac%7Bm%282.0%20%5Csqrt%7BgR%7D%29%5E2%7D%7BR%7D%20%5C%20-%20mg%5C%5C%5C%5CF_%7BN%7D%20%3D%20%5B%282.0%5E2-1%5Dmg%5C%5C%5C%5CF_%7BN%7D%20%3D%20%5B%282.0%29%5E2%20-1%29%20%2850%2A10%5E%7B-3%7D%20%5C%20kg%29%289.8%20%5C%20m%2Fs%5E2%5D%5C%5C%5C%5C)
