Answer:
It is the force that is present because of the mass of our planet. it's what keeps us stuck on the surface of Earth rather than floating off into space.
Explanation:
stresses within itself or other factors. since 1000m is above the ground, it would rely on gravity, such as; " what goes up must come down," the gravity is present because it is above ground level, example, a mud slide on a small island, needs h2o to become heavier to collapse...
Answer:
A- The ball has both kinetic and potential energy,
Explanation:
kinetic energy by virtue of its motion.
potential energy by virtue of its position. (It could roll off the edge of the tabel and convert gravity potential energy to kinetic energy)
Answer:
Kinetic friction is lesser than limiting friction. Two surfaces are rubbed together, first with a smaller force and then with a greater force.
Answer: 116.926 km/h
Explanation:
To solve this we need to analise the relation between the car and the Raindrops. The cars moves on the horizontal plane with a constant velocity.
Car's Velocity (Vc) = 38 km/h
The rain is falling perpedincular to the horizontal on the Y-axis. We dont know the velocity.
However, the rain's traces on the side windows makes an angle of 72.0° degrees. ∅ = 72°
There is a relation between this angle and the two velocities. If the car was on rest, we will see that the angle is equal to 90° because the rain is falling perpendicular. In the other end, a static object next to a moving car shows a horizontal trace, so we can use a trigonometric relation on this case.
The following equation can be use to relate the angle and the two vectors.
Tangent (∅) = Opposite (o) / adjacent (a)
Where the Opposite will be the Rain's Vector that define its velocity and the adjacent will be the Car's Velocity Vector.
Tan(72°) = Rain's Velocity / Car's Velocity
We can searching for the Rain's Velocity
Tan(72°) * Vc = Rain's Velocity
Rain's Velocity = 116.926 km/h