Answer:
We need 1.1 grams of Mg
Explanation:
Step 1: Data given
Volume of water = 78 mL
Initial temperature = 29 °C
Final temperature = 78 °C
The standard heats of formation
−285.8 kJ/mol H2O(l)
−924.54 kJ/mol Mg(OH)2(s)
Step 2: The equation
The heat is produced by the following reaction:
Mg(s)+2H2O(l)→Mg(OH)2(s)+H2(g)
Step 3: Calculate the mass of Mg needed
Using the standard heats of formation:
−285.8 kJ/mol H2O(l)
−924.54 kJ/mol Mg(OH)2(s)
Mg(s) + 2 H2O(l) → Mg(OH)2(s) + H2(g)
−924.54 kJ − (2 * −285.8 kJ) = −352.94 kJ/mol Mg
(4.184 J/g·°C) * (78 g) * (78 - 29)°C = 15991.248 J required
(15991.248 J) / (352940 J/mol Mg) * (24.3 g Mg/mol) = 1.1 g Mg
We need 1.1 grams of Mg
Answer:
CaCl2 (aq) + K2CO3(aq) ---------> CaCO3(s) + 2KCl(aq)
Explanation:
We have the reactants as calcium chloride and potassium carbonate. Recall that we are expecting that the reaction will yield a precipitate. We must keep that in mind as we seek to write its balanced chemical reaction equation.
So we now have;
CaCl2 (aq) + K2CO3(aq) ---------> CaCO3(s) + 2KCl(aq)
Recall that the rule of balancing chemical reaction equation states that the number of atoms of each element on the right side of the reaction equation must be the same as the number of atoms of the same element on the left hand side of the reaction equation.
Answer is (4) - Se.
Among the given choices Se has the highest electronegativity value as 2.4 compared to others. Hence, Se shows <span>greatest attraction for electrons in a chemical bond.
</span>Electronegativity is
a value that tells us how an atom can attract electrons towards itself. <span>If
the electronegativity is high, then the attraction to the electrons is also high.
</span>
The amount of heat lost by granite is equal to the amount
of heat gained by water. Therefore their change in enthalpies must be equal.
The opposite in sign means that one is gaining while the other is losing
ΔH granite = - ΔH water
ΔH is the change in enthalpy experienced by a closed object
as it undergoes change in energy. This is expressed mathematically as,
ΔH = m Cp (T2 – T1)
Given this information, we can say that:
12.5 g * 0.790 J / g ˚C * (T2 – 82 ˚C) =
- 25.0 g * 4.18 J / g ˚C
* (T2 – 22 ˚C)
9.875 (T2 – 82) = 104.5 (22 – T2)
9.875 T2 – 809.75 = 2299 – 104.5 T2
114.375 T2 = 3108.75
T2 = 27.18 ˚C
The temperature of 2 objects after reaching thermal
equilibrium is 27.18 ˚<span>C.</span>