Atomic number for bromine is 35
<span><span>Yes.
An element that is highly electronegative pulls more on the electrons
in a bond, such as oxygen in H20. This creates a polar bond, where
there is a small negative charge on the oxygen, and a small positive
charge in between the hydrogens.
</span>Credit goes to "Erin M" answered on yahoo answers a decade ago.
</span>
The equilibrium constant of the reaction is 282. Option D
<h3>What is equilibrium constant?</h3>
The term equilibrium constant refers to the number that often depict how much the process is able to turn the reactants in to products. In other words, if the reactants are readily turned into products, then it follows that the equilibrium constant will be large and positive.
Concentration of bromine = 0.600 mol /1.000-L = 0.600 M
Concentration of iodine = 1.600 mol/1.000-L = 1.600M
In this case, we must set up the ICE table as shown;
Br2(g) + I2(g) ↔ 2IBr(g)
I 0.6 1.6 0
C -x -x +2x
E 0.6 - x 1.6 - x 1.190
If 2x = 1.190
x = 1.190/2
x = 0.595
The concentrations at equilibrium are;
[Br2] = 0.6 - 0.595 = 0.005
[I2] = 1.6 - 0.595 = 1.005
Hence;
Kc = [IBr]^2/[Br2] [I2]
Kc = ( 1.190)^2/(0.005) (1.005)
Kc = 282
Learn more about equilibrium constant:brainly.com/question/15118952
#SPJ1