Answer:
See explanation
Explanation:
All molecules possess the London dispersion forces. However London dispersion forces is the only kind of intermolecular interaction that exists in nonpolar substances.
So, the only kind of intermolecular interaction that exists in dimethyl ether is London dispersion forces.
As for ethyl alcohol, the molecule is polar due to the presence of polar O-H bond. In addition to London dispersion forces, dipole-dipole interactions and specifically hydrogen bonding also occurs between the molecules.
Because ethyl alcohol is polar, it is more soluble in water than dimethyl ether.
Answer:
chemical, is the answer your looking for
Answer:
Fewer hydrogen bonds form between alcohol molecules. As a result, less heat is needed for alcohol molecules to break away from solution and enter the air.
Explanation:
Hydrogen bonding is a kind of intermolecular interaction that occurs when hydrogen is bonded to a highly electronegative atom.
Both water and alcohols exhibit hydrogen bonding. However, alcohols exhibit fewer hydrogen bonds than water.
As a result of this, the temperature of evaporation is much higher for water than for alcohol because hydrogen bonds hold water molecules more closely than alcohol molecules are held.
Answer is: <span>an atomic radius.
</span>The atomic radius<span> of a </span>chemical element<span> is a measure of the size of its atom.
</span>The atomic radius varies with increasing atomic number, but usually increases because of increasing of number of electrons.
The atomic radius decreases across the periods because an increasing number of protons, because <span>greater attraction between the protons and electrons.</span>
Answer:
Explanation:
2S + 3O₂ = 2SO₃
2moles 3 moles
2 moles of S react with 3 moles of O₂
5 moles of S will react with 3 x 5 / 2 moles of O₂
= 7.5 moles of O₂ .
O₂ remaining unreacted = 10 - 7.5 = 2.5 moles .
All the moles of S will exhausted in the reaction and 2.5 moles of oxygen will be left .