Put the object or material on a scale to figure out<span> its mass. 3. Divide the mass by the volume to </span>figure out the density<span> (p = m / v). You may also need to know </span>how to calculate<span> the volume of a </span>solid s<span>o use the formula</span>
When an object is dropped, tossed, or kicked, as long as it is not laying on the ground, it accelerates downward, because of the force of gravity acting on it.
Answer:
There is a thing called a continental drift. It started about 200 million years ago. At first the continents were all attached, this super continent was called pangaea. Continental drift occurs because of the shift of the tectonic plates within the earth's outer shell. The heat from within the earth triggers movement to occur. This a very slow process though. It took 200 million years for the continents to get where the are now and would probably take another 200 to collide.
Answer:
Her computer is producing thermal energy, not heat.
Explanation:
Answer:
<em>1108.464 N of force</em>
Explanation:
diameter of water hose = 70 cm = 0.7 m
radius = 0.7/2 = 0.35 m
volumetric flow rate Q = 420 L/min
1 L = 0.001 m^3
1 min = 60 s
therefore,
Q = 420 L/min = (420 x 0.001)/60 = 0.007 m^3/s
Area A of fire hose = π
= 3.142 x
= 0.38 m^2
<em>From continuity equation, Q = AV</em>
where V1 is the velocity of the water through the pipe, and A1 is the area of the pipe.
Q = A1V1
0.007 = 0.38V1
V1 = 0.007/0.38 = 0.018 m/s.
Nozzle diameter = 0.75 cm = 0.0075 m
radius = 0.00375
Area = π
= 3.142 x
= 4.42 x
m^2
velocity of water through the nozzle will be
V2 = Q/A2 = 0.007 ÷ (4.42 x
) = 158.37 m/s
From
<em>F = ρQ(v2 - v1)</em>
Where,
F = force exerted
p = density of water = 1000 kg/m^3
F = 1000 x 0.007 x (158.37 - 0.018) = <em>1108.464 N of force</em>