Answer:
-0.64525g
Explanation:
t = Time taken for the car to stop
u = Initial velocity = 95 km/h
v = Final velocity = 0 km/h
s = Displacement
a = Acceleration
Equation of motion

Converting to m/s²

g = Acceleration due to gravity = 9.81 m/s²
Dividing both the accelerations, we get

Hence, acceleration of the car is -0.64525g
(a) The object moves with uniform velocity from A to B.
(b) The object moves with constant velocity from B to C.
(c) The object moves with increasing velocity from C to D.
<h3>
Velocity of the object from point A to B</h3>
V(A to B) = (6 - 0)/(4 - 0) = 1.5 m/s
<h3>
Velocity of the object from point B to C</h3>
V(B to C) = (6 - 6)/(11 - 4) = 0 m/s
<h3>
Velocity of the object from point C to D</h3>
V(C to D) = (7 - 6)/(12 - 11) = 1 m/s
final velocity = 1 + 1.5 m/s = 2.5 m/s
Thus, we can conclude the following;
The object moves with uniform velocity from A to B.
The object moves with constant velocity from B to C.
The object moves with increasing velocity from C to D.
Learn more about velocity here: brainly.com/question/6504879
#SPJ1
No, according to many pictures taken in space, the moon is white. However, on rare occasions, the moon appears blue.
Hope this helps! ☺♥
A control is something you don't touch/change in a exprement, a constant is the same as the control, the independent is the one the you do vhange, the dependet is the one that you observe/ use your 5 sences with.
To solve this, we use the Wien's Displacement Law as shown in the attached picture. First, convert the temperature to Kelvin.
C to F:
C = (F - 32)*5/9
C = (325 - 32)*5/9 = 162.78 °C
C to K:
K = C + 273
K = 162.78 + 273 = 435.78 K
λmax = 2898/435.78 =
<em>6</em><em>.65 μm</em>