Answer:
D, the lithosphere. (CRUST AND UPPER MANTLE)
Explanation:
A tectonic plate (also called lithospheric plate) is a massive, irregularly shaped slab of solid rock, generally composed of both continental and oceanic lithosphere. Plate size can vary greatly, from a few hundred to thousands of kilometers across; the Pacific and Antarctic Plates are among the largest. Plate thickness also varies greatly, ranging from less than 15 km for young oceanic lithosphere to about 200 km or more for ancient continental lithosphere (for example, the interior parts of North and South America).
Information found on:
<u>https://pubs.usgs.gov/gip/dynamic/tectonic.html#:~:text=A%20tectonic%20plate%20(also%20called,both%20continental%20and%20oceanic%20lithosphere.&text=Continental%20crust%20is%20composed%20of,such%20as%20quartz%20and%20feldspar.</u>
<span>Like charges repel and opposite charges attract.
The further away two charged objects are the weaker the electrical force between them.
The closer two charged objects are the stronger the electrical force between them.
Hope this helps :)</span>
Answer:
Explanation:
We know the frequency and the velocity, both of which have good units. All we have to do is rearrange the equation and solve for
λ
:
λ
=
v
f
Let's plug in our given values and see what we get!
λ
=
340
m
s
440
s
−
1
λ
=
0.773
m
Where they slide over each other.
Transform boundaries are formed or occur when two plates slide past each other in a sideways motion. They do not tear or crunch into each other (but the rock in between them may be ground up) and therefore none of the spectacular features are seen such as occur in divergent and convergent boundaries.
In a transform boundary, neither plate is added to at the boundary nor destroyed. They are marked in some places by features like stream beds that have been split in half and the two halves moved in opposite directions.
Answer:
Explanation:
At constant pressure , work done by gas = P x ΔV where P is pressure and ΔV is change in volume
ΔV = 9.2 - 5.6 = 3.6 L
3.6 L = 3.6 x 10⁻³ m³
ΔV = 3.6 x 10⁻³ m³
P = 3.7 x 10³ Pa
So work done
= 3.7 x 10³ x 3.6 x 10⁻³ J
= 13.32 J .
( c ) is the answer , because work is done by the gas so it will be positive.