1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SCORPION-xisa [38]
3 years ago
6

1.How is the law of conservation of energy demonstrated by the movement of the pendulum?

Physics
1 answer:
Snezhnost [94]3 years ago
6 0
1. Law of conservation of energy states that energy cannot be created, nor destroyed, for example, windmills take kinetic energy(movement energy) and convert it into electrical energy using gears and a generator as well as the blades.

so this supports it because the pendulum never reaches the same height twice unless you reset it so the energy is always getting less and less and not randomly getting back onto the pendulum.

2.Gravity, friction and air resistance slow it down as well

3. at the top, potential energy is the amount of energy something has relative to the amount it can disperse before stopping, for example, a book on a shelf has more potential energy than that of a book on a table, this is because when the shelf book falls it will create more energy than the table book.

You might be interested in
An object is thrown from the ground with an initial velocity of 30 m/s. What is the velocity at the point 25 m above the ground?
dsp73

Answer:

It's a pretty simple suvat linear projectile motion question, using the following equation and plugging in your values it's a pretty trivial calculation.

V^2=U^2+2*a*x

V=0 (as it is at max height)

U=30ms^-1 (initial speed)

a=-g /-9.8ms^-2 (as it is moving against gravity)

x is the variable you want to calculate (height)

0=30^2+2*(-9.8)*x

x=-30^2/2*-9.8

x=45.92m

3 0
3 years ago
Read 2 more answers
A tow truck exerts a net horizontal force of 1050 N on a 760-kg car. What is the acceleration of the car during this time?
vovikov84 [41]
We can solve the problem by using Newton's second law of motion:
F=ma
where
F is the net force applied to the object
m is the object's mass
a is the acceleration of the object

In this problem, the force applied to the car is F=1050 N, while the mass of the car is m=760 kg. Therefore, we can rearrange the equation and put these numbers in, in order to find the acceleration of the car:
a= \frac{F}{m}= \frac{1050 N}{760 kg}=1.4 m/s^2

The equation also tells us that the acceleration and the force have same directions: therefore, since the force exerted on the car is horizontal, the correct answer is
<span>B) 1.4 m/s2 horizontally.</span>
5 0
3 years ago
Hello guys! Can u please help me with physics. I translated it in English. Can yall help me please how much u can!!
DedPeter [7]

1. Since the body is thrown vertically upward, the only force acting on it as it rises and falls is gravity, which causes a constant downward acceleration with magnitude g = 9.8 m/s². Because this acceleration is constant, we can use the formula

v² - u² = 2a ∆x

where

u = initial speed

v = final speed

a = acceleration

∆x = displacement

At its maximum height, some distance y above the point where the body is launched, the body has zero velocity, so

0² - (20 m/s)² = 2 (-9.8 m/s²) y

Solve for y :

y = (20 m/s)² / (2 (9.8 m/s²)) ≈ 20.4 m

2. Relative to the ground, the body's maximum height is 60 m + 20.4 m ≈ 80.4 m.

3. At any time t ≥ 0, the body's vertical velocity is given by

v = 20 m/s - gt

At the highest point, we have

0 = 20 m/s - (9.8 m/s²) t

and solving for t gives

t = (20 m/s) / (9.8 m/s²) ≈ 2.04 s

4. The body's height y above the ground at any time t ≥ 0 is given by

y = 60 m + (20 m/s) t - 1/2 gt²

Solve for t when y = 0 :

0 = 60 m + (20 m/s) t - 1/2 (9.8 m/s²) t²

Using the quadratic formula,

t = (-b + √(b² - 4ac)) / (2a)

(and omitting the negative root, which gives a negative solution) where a = -1/2 (9.8 m/s²), b = 20 m/s, and c = 60 m. You should end up with

t ≈ 6.09 s

5. At the time found in (4), the body's velocity is

v = 20 m/s - g (6.09 s) ≈ -39.7 m/s

Speed is the magnitude of velocity, so the speed in question is 39.7 m/s.

6 0
3 years ago
You slide a hockey puck across the ice in a hockey rink
REY [17]

Answer-

mk thats kool.

8 0
3 years ago
Read 2 more answers
When non-metric units were used in the United Kingdom, a unit of mass called the pound-mass (lbm) was employed, where 1lbm=0.453
Drupady [299]

Answer:

a) 0.022%

b) 10014.32 lb

Explanation:

a) Percentage uncertainty would be

0.0001\times \frac{100}{0.4539}=0.022%

Percent uncertainty is 0.022%

b) For 1 kg uncertainty mass in kg would be

\frac{1}{0.022}\times {100}=4545.5\ kg

Mass in pounds would be

\frac{4545.5}{0.4539}=10014.32\ lb

Mass in pound-mass is 10014.32 lb

8 0
3 years ago
Other questions:
  • The water table is the
    13·1 answer
  • If the magnitude of F1 is greater than the magnitude of F2, then the box is
    9·2 answers
  • After your school's team wins the regional championship, students go to the dorm roof and start setting off fireworks rockets. T
    12·2 answers
  • Low beam headlamps are only effective for speeds up to __________ mph.
    11·2 answers
  • What is the formula of two vectors which are mutually perpendicular? ​
    15·1 answer
  • A particle moving along the x-axis has its velocity described by the function vx =2t2m/s, where t is in s. its initial position
    15·1 answer
  • All organisms need glucose or a source of
    15·1 answer
  • This object was observed in 1997.<br><br> The object in the picture is ____ a/an .
    13·2 answers
  • Why are road accidents at high speeds very much worse than road accidents at low speeds?
    7·2 answers
  • 1. What is the average speed of a runner that<br> travels 100 meters in 9.7 seconds?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!