Scott needs to determine the density of a metallic rod. First, he should determine the mass of his sample on the laboratory balance. Second, he should measure the volume of his sample by water displacement. Finally, he can calculate the density by dividing mass/volume.
Hope this helped ;)
Answer:
What is the centripetal acceleration of the tip of the fan blade?
6.0 m/s2
48 m/s2
53 m/s2
96 m/s2
Answer is 96
Explanation:
Answer:

Explanation:
The root mean square velocity of the gas at an equilibrium temperature is given by the following formula:

where,
v = root mean square velocity of molecules:
R = Universal Gas Constant
T = Equilibrium Temperature
M = Molecular Mass of the Gas
Therefore,
For T = T₁ :

For T = T₂ :

Since both speeds are given to be equal. Therefore, comparing both equations, we get:

Answer:
The electric field at origin is 3600 N/C
Solution:
As per the question:
Charge density of rod 1, 
Charge density of rod 2, 
Now,
To calculate the electric field at origin:
We know that the electric field due to a long rod is given by:

Also,
(1)
where
K = electrostatic constant = 
R = Distance
= linear charge density
Now,
In case, the charge is positive, the electric field is away from the rod and towards it if the charge is negative.
At x = - 1 cm = - 0.01 m:
Using eqn (1):

(towards)
Now, at x = 1 cm = 0.01 m :
Using eqn (1):

(towards)
Now, the total field at the origin is the sum of both the fields:
