Answer:
2.85 s .
Explanation:
y(t) = y(0) + v₀t + 1/2 gt²
y(t) is vertical displacement , y(0) is initial position , v₀ is initial velocity and t is time required to make vertical displacement and g is acceleration due to gravity.
Here y(0) is zero , v₀ = 14 m/s , g = 9.8 m s⁻² , y(t ) = 0 , as the pumpkin after time t comes back to its initial position, that is ground .
We shall take v₀ as negative as it is in upward direction and g as positive as it acts in downward direction
Put the values in the equation above,
0 = 0 - 14t + 1/2 x 9.8 t²
14 t = 1/2 x 9.8 t²
t = 28 / 9.8
t = 2.85 s .
The work that Sam should do in order to stop is the boat is the same as that of the kinetic energy of the object in order to counter its motion. Kinetic energy is calculated through the equation,
KE = 0.5mv²
where KE is kinetic energy, m is mass, and v is the velocity.
Substituting,
KE = 0.5(1200kg)(1.2 m/s)²
<em>KE = 864 J</em>
Answer:
These two forces are called action and reaction forces and are the subject of Newton's third law of motion. Formally stated, Newton's third law is: For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects.