equilibrium
Heat transfers from a body with high temperature to a body with low temperature until both bodies are in the same temperature.
Answer:
0.600 g/cm³
Explanation:
Step 1: Given data
- Height of the cylinder (h): 6.62 cm
- Diameter of the cylinder (d): 2.34 cm
- Mass of the cylinder (m): 17.1 g
Step 2: Calculate the volume of the cylinder
First, we have to determine the radius, which is half of the diameter.
r = d/2 = 2.34 cm/2 = 1.17 cm
Then, we use the formula for the volume of the cylinder.
V= π × r² × h
V= π × (1.17 cm)² × 6.62 cm
V = 28.5 cm³
Step 3: Calculate the density (ρ) of the sample
The density is equal to the mass divided by the volume.
ρ = m/V
ρ = 17.1 g/28.5 cm³
ρ = 0.600 g/cm³
Answer:
0.225 atm
Explanation:
v1=450ml÷1000=0.45l(1l=1000ml)
P1=1
v2=2.00l
p2=?
p1v1=p2v2
p2=p1v1/v2
=1×0.45/2
=0.225
so the answer is first one
Question:
1. (NH)2CrO
a) Number of moles of H:
b) Number of moles of N:
Answer:
a) Number of moles of H: 2
b) Number of moles of N: 2
Explanation:
The
is ammonium Chromate which is monoclinic and yellow Crystal that is formed due to the reaction of ammonium Hydroxide and ammonium di-chromate. It is used as catalyst, corrosion inhibitor as well as analytical inhibitors.
Question:
2. Ag.SO.
a) Molar Mass:
b) Percent Composition of Ag:
c) Percent Composition of S:
d) Percent Composition of O:
Answer:
a) Molar Mass: 155.93 Kg
b) Percent Composition of Ag: 69%
c) Percent Composition of S: 20.5%
d) Percent Composition of O: 10.2%
Explanation:
Molar mass = molar mass of Ag + molar mass of S + molar mass of O
=>107.87+32.06+16
=> 155.93 Kg
Percent Composition of Ag
= 
= 
= 0.69 \times 100
= 69%
Percent Composition of S:
= 
=
= 0.205 \times 100
= 20.5%
Percent Composition of O:
= 
= 
= 0.102 \times 100
= 10.2%