Answer:
The general shape of a frequency distribution. For many data sets, statisticians use this information to determine whether there is a “normal” distribution of values. In normal distributions, the mean, median, and mode are the same. Whether the distribution is symmetrical or skewed in a certain direction. If the data is skewed to the right, this shows the mean will be greater than the median. Similarly, if the data is skewed left, the mean will be less than the median. The symmetry, or asymmetry, of the chart can help statisticians calculate probability. The modality of the data set. This means how many peaks exist in the data. For normal distributions, there will be one peak, or mode, in the data set.
Explanation:
i just got it right on edgenuity :)
The decibel system of sound intensity operates by a logarithmic scale, meaning that sound intensity increases exponentially in relation to the decibel rating.
For decibels, the equation between intensity and the dB equivalent is:
dB = 10log(i),
where “i” is the intensity of the sound. The ten in front of the log means that an increase in ten dB results in a tenfold increase in sound intensity; for example, a 30 dB sound is ten times softer than a 40 dB sound.
In this case, a sound with a dB of 80 would be 1000 times more intense than a 50 dB sound, so the decibel rating of B is 80.
Hope this helps!
Answer:
The object will move to Xfinal = 7.5m
Explanation:
By relating the final velocity of the object and its acceleration, I can obtain the time required to reach this velocity point:
Vf= a × t ⇒ t= (7.2 m/s) / (4.2( m/s^2)) = 1,7143 s
With the equation of the total space traveled and the previously determined time I can obtain the end point of the object on the x-axis:
Xfinal= X0 + /1/2) × a × (t^2) = 3.9m + (1/2) × 4.2( m/s^2) × ((1,7143 s) ^2) =
= 3.9m + 3.6m = 7.5m
Answer:
0.2286 m, 0.686 m and 1,143 m
therefore we see that there is respect even where the intensity is minimal
Explanation:
Destructive interference to the two speakers is described by the expression
Δr = (2n +1) λ/2
where r is the distance, λ the wavelength and n an integer indicating the order of the interference
let's locate the origin on the left speaker
let's find the wavelength with the equation
v = λ f
λ = v / f
we substitute
Δr = (2n + 1) v / 2f
let's calculate for difference values of n
Δr = (2n +1) 343/(2 750)
Δr = (2n + 1) 0.2286
we locate the different values for a minimum of interim
n Δr (m)
0 0.2286
1 0.686
2 1,143
therefore we see that there is respect even where the intensity is minimal
Answer: 90 km/hr
Explanation:
Speed= distance divided by time
540/6
= 90km/hr