According to Vsepr theory, a molecule with the general formula ax4e2 will have a square planar molecular shape.The molecule of this geometry has their atoms which are positioned at the corners of the square on the same plan about a central atom.
We have to get the amount of nitrogen to be consumed to get 0.75 moles of ammonia.
The amount of nitrogen (in grams) required to prepare 0.75 moles of ammonia is: 10.5 grams.
Ammonia (NH₃) can be prepared from nitrogen (N₂) as per following balanced chemical reaction-
N₂ (g) + 3H₂ (g) ⇄ 2NH₃ (g)
According to the above reaction, to prepare 2 moles of ammonia, one mole of nitrogen is required. Hence, to prepare 0.75 moles of ammonia,
moles = 0.375 moles of nitrogen is required.
Molar mass of nitrogen is 28 grams, i.e, mass of one mole of nitrogen is 28 grams, so mass of 0.375 moles of nitrogen is 0.375 X 28 grams=10.5 grams of nitrogen.
Therefore, the amount of nitrogen (in grams) required to prepare 0.75 moles of ammonia is 10.5 grams.
The metal conducts the heat and through conduction, cooks the brownies; conduction also cooks the brownies in the glass pan, but since infrared goes right through the glass, they also cook by radiation.
The required formula of hydrate is MgSO₃.6H₂O.
<h3>How do we calculate the formula of hydrate?</h3>
The number of moles of water per mole of anhydrous solid (x) will be computed by dividing the number of moles of water by the number of moles of anhydrous solid (x) to find the hydrate's formula.
Moles will be calculated as:
n = W/M, where
- W = given mass
- M = molar mass
Moles of MgSO₃ = 0.737g / 104.3g/mol = 0.007mol
Moles of H₂O = 0.763g / 18g/mol = 0.04 mol
Number of H₂O molecule = 0.04/0.007 = 5.7 = 6
So formula of hydrate is MgSO₃.6H₂O.
Hence required formula of hydrate compound is MgSO₃.6H₂O.
To know more about hydrate compound, visit the below link:
brainly.com/question/22411417
#SPJ1
Answer: The molarity of the solution is 0.125 M
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.
where,
n = moles of solute
= volume of solution in L
moles of
=
Now put all the given values in the formula of molality, we get
Therefore, the molarity of the solution is 0.125 M