Answer:

Explanation:
-The chemical formula for Molybdenum (V) Dichromate is 
-There are 21 moles of oxygen per one mole of Molybdenum (V) Dichromate
-We apply Avogadro's constant to find the number of atoms of oxygen:

Hence, there are
Answer:
potential energy is a type of energy an object has because of it's position
From the given equation we can deduce what changes will occur if the frequency of the sound is doubled
V= f (λ)
Speed = frequency. Wavelength
When the frequency is doubled, speed will not change. Because speed depends on factors like temperature, air pressure, density of the gas. Since all these factors are unchanged thus speed will remain unchanged
Frequency is the number of waves produced per second. Frequency and wavelength are inversely proportional .Thus, if the frequency is doubled the wavelength would be halved.
If my math is right its A) 7
because 189 divided by 27 is 7
It's weird but technically correct to say that a radio wave can be considered a low-frequency light wave. Radio and light are both electromagnetic waves. The only difference is that radio waves have much much much longer wavelengths, and much much much lower frequencies, than light waves have. But they're both the same physical phenomenon.
However, a radio wave CAN'T also be considered to be a sound wave. These two things are as different as two waves can be.
-- Radio is an electromagnetic wave. Sound is a mechanical wave.
-- Radio waves travel more than 800 thousand times faster than sound waves do.
-- Radio waves are transverse waves. Sound waves are longitudinal waves.
-- Radio waves can travel through empty space. Sound waves need material stuff to travel through.
-- Radio waves can be detected by radio, TV, and microwave receivers. Sound waves can't.
-- Sound waves can be detected by our ears. Radio waves can't.
-- Sound waves can be generated by talking, or by hitting a frying pan with a spoon. Radio waves can't.
-- Radio waves can be generated by an alternating current flowing through an isolated wire. Sound waves can't.