Explanation:
What will the question be ?
To determine the mass of the sample, first find the volume difference after and before the aluminum was placed, the volume change is equal to the volume of the submerged object, in this case aluminum.
Then knowing volume of aluminum and the density of it, we can solve for the mass.
D = m/v
Dv = m
2.7 g/ml • 8 ml = 21.6 grams.
<h3>
Answer:</h3>
14 milliliters
<h3>
Explanation:</h3>
We are given;
Prepared solution;
- Volume of solution as 0.350 L
- Molarity as 0.40 M
We are required to determine the initial volume of HNO₃
- We are going to use the dilution formula;
- The dilution formula is;
M₁V₁ = M₂V₂
Rearranging the formula;
V₁ = M₂V₂ ÷ M₁
=(0.40 M × 0.350 L) ÷ 10.0 M
= 0.014 L
But, 1 L = 1000 mL
Therefore,
Volume = 14 mL
Thus, the volume of 10.0 M HNO₃ is 14 mL
Qualitative properties are properties that are observed and can generally not be measured with a numerical result. They are contrasted to quantitative properties which have numerical characteristics.
Answer: The order with respect to
is 1.
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

k= rate constant
x = order with respect to 
y = order with respect to A
n = x+y = Total order
From trial 1:
(1)
From trial 2:
(2)
Dividing 2 by 1 :
therefore x= 1
Thus order with respect to
is 1.