Answer:
Mechanical average of a wheel = 3
Explanation:
Given:
Radius of wheel = 1.5 ft = 1.5 x 12 = 18 inches
Radius of axle = 6 inches
Find:
Mechanical average of a wheel
Computation:
Mechanical average of a wheel = Radius of wheel / Radius of axle
Mechanical average of a wheel = 18 / 6
Mechanical average of a wheel = 3
Answer:
That's a really nice question sadly I don't know the answer I'm replying to you cuz I'm tryna get points so... Sorry
Answer:
a) The key issues are the sue for libel and the evidence.
b) I would make a deal with her and implement a security program in the company.
Explanation:
The main issue in this case is that Pam Jones sued the company for libel, and the company remains in a position in which it has to prove that the internal investigation followed the right steps and indeed, the proves reflected that she was guilty and the fact that she got fired was correct.
The important here is exactly that the theft can be proved.
As an HR Director, I would give the correct proves in order to win the case, and if that is impossible, because of the tools and evidence, I would make a deal with her where both parts can be adequate to the problem.
She can´t be working again in the company but she can get financed according to her working years; also I would use this case as a growing opportunity by implementing new security methods that give more confidence between the company and its employees.
Sam, Elijah, Joy Those are 100% correct from my human knowledge
Answer:
a. Solid length Ls = 2.6 in
b. Force necessary for deflection Fs = 67.2Ibf
Factor of safety FOS = 2.04
Explanation:
Given details
Oil-tempered wire,
d = 0.2 in,
D = 2 in,
n = 12 coils,
Lo = 5 in
(a) Find the solid length
Ls = d (n + 1)
= 0.2(12 + 1) = 2.6 in Ans
(b) Find the force necessary to deflect the spring to its solid length.
N = n - 2 = 12 - 2 = 10 coils
Take G = 11.2 Mpsi
K = (d^4*G)/(8D^3N)
K = (0.2^4*11.2)/(8*2^3*10) = 28Ibf/in
Fs = k*Ys = k (Lo - Ls )
= 28(5 - 2.6) = 67.2 lbf Ans.
c) Find the factor of safety guarding against yielding when the spring is compressed to its solid length.
For C = D/d = 2/0.2 = 10
Kb = (4C + 2)/(4C - 3)
= (4*10 + 2)/(4*10 - 3) = 1.135
Tau ts = Kb {(8FD)/(Πd^3)}
= 1.135 {(8*67.2*2)/(Π*2^3)}
= 48.56 * 10^6 psi
Let m = 0.187,
A = 147 kpsi.inm^3
Sut = A/d^3 = 147/0.2^3 = 198.6 kpsi
Ssy = 0.50 Sut
= 0.50(198.6) = 99.3 kpsi
FOS = Ssy/ts
= 99.3/48.56 = 2.04 Ans.