D is the answer. Hope this helped
Answer:
1790 μrad.
Explanation:
Young's modulus, E is given as 10000 ksi,
μ is given as 0.33,
Inside diameter, d = 54 in,
Thickness, t = 1 in,
Pressure, p = 794 psi = 0.794 ksi
To determine shear strain, longitudinal strain and circumferential strain will be evaluated,
Longitudinal strain, eL = (pd/4tE)(1 - 2μ)
eL = (0.794 x 54)(1 - 0.66)/(4 x 1 x 10000)
eL = 3.64 x 10-⁴ radians
Circumferential strain , eH = (pd/4tE)(2-μ)
eH = (0.794 x 54)(2 - 0.33)/(4 x 1 x 10000)
eH = 1.79 x 10-³ radians
The maximum shear strain is 1790 μrad.
Answer: from what i know im pretty sure its isometrics or sketches im certain its sketches but not 100%
Explanation: A sketch is a rapidly executed freehand drawing that is not usually intended as a finished work. A sketch may serve a number of purposes: it might record something that the artist sees, it might record
Answer:
a) 24 kg
b) 32 kg
Explanation:
The gauge pressure is of the gas is equal to the weight of the piston divided by its area:
p = P / A
p = m * g / (π/4 * d^2)
Rearranging
p * (π/4 * d^2) = m * g
m = p * (π/4 * d^2) / g
m = 1200 * (π/4 * 0.5^2) / 9.81 = 24 kg
After the weight is added the gauge pressure is 2.8kPa
The mass of piston plus addded weight is
m2 = 2800 * (π/4 * 0.5^2) / 9.81 = 56 kg
56 - 24 = 32 kg
The mass of the added weight is 32 kg.
Answer:
S = 5.7209 M
Explanation:
Given data:
B = 20.1 m
conductivity ( K ) = 14.9 m/day
Storativity ( s ) = 0.0051
1 gpm = 5.451 m^3/day
calculate the Transmissibility ( T ) = K * B
= 14.9 * 20.1 = 299.5 m^2/day
Note :
t = 1
U = ( r^2* S ) / (4*T*<em> t </em>)
= ( 7^2 * 0.0051 ) / ( 4 * 299.5 * 1 ) = 2.0859 * 10^-4
Applying the thesis method
W(u) = -0.5772 - In(U)
= 7.9
next we calculate the pumping rate from well ( Q ) in m^3/day
= 500 * 5.451 m^3 /day
= 2725.5 m^3 /day
Finally calculate the drawdown at a distance of 7.0 m form the well after 1 day of pumping
S = 
where : Q = 2725.5
T = 299.5
W(u) = 7.9
substitute the given values into equation above
S = 5.7209 M