Answer: I dont take L´s. Only W´s so ha!!!
Explanation: Lol just messin with ya. I actually dont know what your question is but have a good one, and stay safe!! :))
The Inca “City of the Sun” was the city of Cuzco
It looks like we are solving for a pressure. All that is required is some algebraic manipulation to find our pressure in mmHg.
Given:
(5.0 m³)(7.5 mmHg) = (P)(4.0m³)
Multiply:
37.5 = 4.0P
Divide:
9.375 = P
P = 9.4 mmHg (remember sig figs)
<h3>
Answer:</h3>
9.4 mmHg
Answer: The average valence electron energy (AVEE) of this element =
1014.2 KJ/ mol or 1.0142mJ/mol.
Explanation:
The average valence electron energy = (number of electrons in s subshell x Ionization energy of that subshell) + (number of electrons in p subshell x Ionization energy of that subshell) / total number of electrons in both subshells of the valence shells.
The 5A elements are non-metals like Nitrogen and Phosphorus with the metallic character increasing as you go down the group, So a new 5A element will have characteristics of its group with 5 valence electron in its outermost shell represented as ns2 np3
Therefore the average valence electron energy (AVEE) of this element will be calculated as
The average valence electron energy = (2 x 1370 kJ/mol + 3 x 777 kJ/mol.) / 5
2740+2331/ 5 =5071/5
=1014.2 KJ/ mol or 1.0142mJ/mol.
Answer:
A solution that is 0.10 M HCN and 0.10 M LiCN
Explanation:
- A good buffer system contains a weak acid and its salt or a weak base and its salt.
- In this case; A solution that is 0.10 M HCN and 0.10 M LiCN, would make a good buffer system.
- HCN is a weak acid, while LiCN is a salt of the weak acid, that is, CN- conjugate of the acid.