Answer:
B'=1.935 T
Explanation:
Given that
magnetic field ,B= 0.645 T
We know that magnetic filed in the solenoid is given as

I=Current
n=Number of turn per unit length
μ0 =magnetic permeability
Now when the current increased by 3 factors
I'=3 I
Then the magnetic filed


B'=3 B
That is why
B' = 3 x 0.645 T
B'=1.935 T
Therefore the new magnetic filed will be 1.935 T.
What don’t you understand? If you haven’t uploaded anything
Answer:
time rising = 34 / 9.8 = 3.47 sec
total time in air = 2 * 3.47 sec = 6.94 sec
(time rising must equal time falling)
R = 17 m/s * 6.94 s = 118 m
Can also use range formula
R = v^2 sin (2 theta) / g
tan theta = 34 / 17 = 2
theta = 63.4 deg
2 theta = 126.9 deg
sin 126.9 = .8
v^2 = 17^2 + 34^2 = 1445 m^2/s^2
R = 1445 * .8 / 9.8 = 118 m agreeing with answer found above
The total displacement of the person walking from point A to point B is 300 yards.
As shown in the figure we can conclude that the required method to calculate the total displacement is the Pythagoras theorem.
<h3>Pythagoras theorem in brief :</h3>
According to the Pythagorean Theorem, the square that represents the hypotenuse, or side of a right triangle that faces the right angle, is equal to the total of the squares on the triangle's legs.(or, in popular algebraic notation,
).
<h3>Calculation: </h3>
Let,
a = 500
b= 300
Hence by using Pythagoras' theorem
Total displacement of the person =
=
= 
Thus the total displacement of the person from starting point is 300 yards.
Learn more about the displacement examples here:
brainly.com/question/11188852
#SPJ4
TRUE.
Taste and smell senses are separate senses with their own receptor organs yet they are intimately entwined. Tastants, chemicals in foods are detected by taste buds which consist of special sensory cells.. When stimulated, these cells send signals to specific areas of the brain which then makes us conscious of the perception of taste. Also specialized cells in the nose pick up odorants, airborne odor molecules. Odorants stimulate receptor proteins found on hairlike cilia at the tips of the sensory cells, a process that initiates a neural response.