Answer:
Yes
Explanation:
You add more force behind the cart with the higher mass. Assuming that its higher mass causes it to weigh more.
Answer:
Where Blocal = local magnetic field between the two regions of the molecule
Blocal = (1-σ)B0
ΔBlocal = (1-σ1)B0 - (1-σ2)B0 = (σ2 - σ1)B0 = ΔσB0 ≈ ΔδB0 x 10∧-6
= (3.36-1.16) x 10∧-6 x B0 = 2.20 x 10∧-6B0
(a) ΔBlocal = 2.20 x 10∧-6 x 1.9T = 4.2 μT
(b) ΔBlocal = 2.20 x 10∧-6 x 16.5T = 36.3 μT
Explanation:
<span>STP means standard temperature
and pressure at 0°C (273K) and 1 atm (atmosphere). The density of the unknown
gas is 0.63 gram per liter. The deal gas equation is PV = nRT. The n is the
numer of moles and can be represented as mass of the gas, m, divided by the
molar mass, c. so we have,</span>
PV = nRT
PV = (m/c)RT
Since the density is d = m/V
Pc = (m/V)RT
Pc = dRT
c = drT/P
substitute the values into the equation,
c = [(0.63g/L)(0.08206
L-atm/mol-K)(273K)]/(1atm)
<u>c = 14.11 g/mol</u>
Answer:
of HA is 6.80
Explanation:

Acid dissociation constant (
) of HA is represented as-
![K_{a}=\frac{[H^{+}][A^{-}]}{[HA]}](https://tex.z-dn.net/?f=K_%7Ba%7D%3D%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
Where species inside third bracket represents equilibrium concentrations
Now, plug in all the given equilibrium concentration into above equation-

So, 
Hence 