Answer:
1. Examples of transverse waves include vibrations on a string and ripples on the surface of water. We can make a horizontal transverse wave by moving the slinky vertically up and down. In a longitudinal wave the particles are displaced parallel to the direction the wave travels.
2. There are two basic types of wave motion for mechanical waves: longitudinal waves and transverse waves. The animations below demonstrate both types of wave and illustrate the difference between the motion of the wave and the motion of the particles in the medium through which the wave is travelling.
3. f is force and 人 is wave length
Answer:
Definimos:
Rapidez media es igual al cociente entre la distancia recorrida y el tiempo que se tarda en recorrer esa distancia.
En este caso la distancia recorrida es 400m, y el tiempo que se tarda es 30s, entonces la rapidez media va a ser:
RM = 400m/30s = 13.33 m/s
La velocidad media por otro lado, es igual al cociente entre el desplazamiento y el tiempo necesario para desplazarse.
El desplazamiento es igual a la distancia entre la posición final y la posición inicial, que en este caso eso 40m, y el tiempo necesario sigue siendo 30s, entonces la velocidad media va a ser:
VM = 40m/30s = 1.33 m/s
Answer:

Explanation:
From the question we are told that


Generally the equation for velocity is mathematically given as



Generally the equation for Centripetal acceleration is mathematically given as



Answer:
The amplitude is
Explanation:
From the question we are told that
The frequency of when sound is approaching observer is 
The frequency as the move away from observer is 
The time between the pitch are 
Here you are the observer and your friends are the source of the sound
The period is mathematically evaluated as

as it is the time to complete one oscillation which from on highest pitch to the next highest pitch
Now T can also be mathematically represented as

Where
is the angular velocity
=> 
=> 
Now using Doppler Effect,
The source of the sound is approaching the observer
The


Where A is the amplitude
So when the source is moving away from the observer
Here
is the fundamental frequency
Dividing the both equation we have




=> 

Answer:
D
Explanation:
Newtons first law states that if an object is at rest it will stay at rest only if an unbalanced force acts on it. As well as if an object is in motion it will stay in motion unless an unbalanced force acts on it.
Ps- The object will stay moving in the same speed and direction.