Answer:
10628.87 J
Explanation:
We are given that
Force applied =F=5592 N

Displacement=D=3.79 m
We have to find the work done in sliding the piano up the plank at a slow constant rate.
Work done=
The perpendicular component of force=
Work done =
Hence, the work done in sliding the piano up the plank at a slow constant rate=10628.87 J
The inner planets are usually rocky because the gravitational pull is stronger closer to the star or in this case the sun. The dust and rocky particles that are left over after a super nova or in a nebula will tend to orbit closer to a proto-star when a solar system is in its early days. In our solar system these planets are Mercury, Venus, Earth and Mars. Gases are less dense and will be less affected by the pull of gravity because rocky particles have more mass. The outer planets are gas giants formed from clouds of gas that would be further out in the spinning disk around a proto-star.
The gravitational potential energy
gpe = mgh

Answer:
468 m
Explanation:
So the building and the point where the laser hit the water surface make a right triangle. Let's call this triangle ABC where A is at the base of the building, B is at the top of the building, and C is where the laser hits the water surface. Similarly, the submarine, the projected submarine on the surface and the point where the laser hit the surface makes a another right triangle CDE. Let D be the submarine and E is the other point.
The length CE is length AE - length AC = 284 - 234 = 50 m
We can calculate the angle ECD:


This is also the angle ACB, so we can find the length AB:



So the height of the building is 468m
Answer:
192.08J
19.6m/s
Explanation:
Since there will be no potential energy when the ball is on the ground, the change in potential energy is equal to the potential energy at the start when the ball is 19.6m above the ground.
PE=mgh
=(1)(9.8)(19.6)
=192.08J
v²=u²+2as, where v is the final velocity, u is initial velocity, a is acceleration and s is distance. Initial velocity is 0 since it starts at rest.
v²=u²+2as
v²=0²+2(9.8)(19.6)
v=√384.16
=19.6m/s