B. to achieve sustainable development
Answer:
Define the problem
I hope this helps!
Explanation:
The problem must be know before you can develop and solution, generate concepts, or construct and test a prototype
Just a suggestion: i would start with short-term goals to help you build up to your long-term goals
Answer:
The bending stress is 502.22 MPa
Explanation:
The diameter of the pinion is equal to:

Where
m = module = 5
Np = number of teeth of pinion = 26
= 0.13 m
The pitch line velocity is equal to:

Where
wp = speed of the pinion = 1800 rpm

The factor B is equal to:

The factor A is equal to:
A = 50 + 56*(1 - B) = 50 + 56*(1-0.396) = 83.82
The dynamic factor is:

The geometry bending factor at 20°, the application factor Ka, load distribution factor Km, the size factor Ks, the rim thickness factor Kb and Ki the idler factor can be obtained from tables
JR = 0.41
Ka = 1
Kb = 1
Ks = 1
Ki = 1.42
Km = 1.7
The diametrical pitch is equal to:

The bending stress is equal to:

Answer:
i) 0.610 m or 610 mm
ii) 0.4 m or 400 mm
Explanation:
The pressure difference between the pipes is
a) Air
Pa + πha +Ha = Pb + πhb +Hb
Pa - Pb = π(hb-ha) + Hb-Ha
Relative density of air = 1.2754 kg /m3
Pa - Pb = 1.2754 * 0.4 + (0.3-0.2) = 0.610 m or 610 mm
b) paraffin of relative density of 0.75
Pa - Pb = π(hb-ha) + Hb-Ha
Pa - Pb = 0.75 * 0.4 + (0.3-0.2) = 0.4 m or 400 mm