In a titration, for an acid to neutralize a base, at the equivalence point, there should be an equal number of moles of H+ and OH-.
Moles of OH- can be found by multiplying the concentration of the base by the volume. (You will need to keep in mind the stoichimetric coefficients if the strong base is Ca(OH)₂, Ba(OH)₂, or Sr(OH)₂.
Moles of OH- = moles of H+
(0.253 M) * 0.005 L = 0.01000 L * c
c = 0.1265 M
The concentration of HBr is 0.127 M.
B. The inhibitor wouldn’t stop sunlight or water, but it stops glucose production (from photosynthesis) and u could call glucose the plant’s food.
<span>The
density of an object is defined to be its mass divided by the volume it
occupies. For this problem, the mass of the cube was given to be 25 g while its
volume is 125 cm</span>³. Thus, we simply divide 25 g by 125 cm³ to get the object’s density. We then calculate that the cube has a density of
0.2 g/ cm³.
Yes the water boils but it doesn't become water gas it becomes just gas also known as evaporation