Small ions have small areas. There is less resistance as they move through the solution.
For example, in molten salts, the conductivity of <span>Li+</span> is greater than that of <span>Cs+</span>.
Small ions have high charge density.
Explanation:
Molar mass of
= 39.1 + 35.5 + 3(16.0) = 122.6 g
Molar mass of KCl = 39.1 + 35.5 = 74.6 g
Molar mass of
= 32.0 g
According to the equation, 2 moles of
reacts to give 3 moles of oxygen.
Therefore, 2 (122.6) = 245.2 g of
will give 3 (32.0) = 96.0 g of oxygen. Thus, 245.2 g of
gives 96.0 g of oxygen.
(a) Calculate the amount of oxygen given by 2.72 g of
as follows.
of
(b) Calculate the amount of oxygen given by 0.361 g of
as follows.
of
c) Calculate the amount of oxygen given by 83.6 kg
as follows.
of 
Convert kg into grams as follows.
= 32731 g of 
(d) Calculate the amount of oxygen given by 22.5 mg of
as follows.

Convert mg into grams as follows.
of 
From what i read, the answer should be b--false
Protons are held inside nucleous with neutrons with large amount of force. So mere rubbing doesn't help in breaking the nucleous of an atom. But electrons are far from the nucleous and the force of attraction is smaller. So electrons can jump readily while protons can't
Answer:
I believe it is "Arsenenate"