Answer:
The pH is 2, 60
Explanation:
The pH gives us an idea of the acidity or basicity of a solution. It is calculated as:
pH = -log (H +)= -log (2.5x10-3 )
<em>pH=2, 60</em>
B. It has a negative charge and much less mass than a proton.
Answer:
Oxygen, it's supposed to have six valenge electrons.
Explanation:
Count the dots on the oxygen atom, you'll see seven, but there's supposed to be six.
We cannot solve this problem without using empirical data. These reactions have already been experimented by scientists. The standard Gibb's free energy, ΔG°, (occurring in standard temperature of 298 Kelvin) are already reported in various literature. These are the known ΔG° for the appropriate reactions.
<span>glucose-1-phosphate⟶glucose-6-phosphate ΔG∘=−7.28 kJ/mol
fructose-6-phosphate⟶glucose-6-phosphate ΔG∘=−1.67 kJ/mol
</span>
Therefore, the reaction is a two-step process wherein glucose-6-phosphate is the intermediate product.
glucose-1-phosphate⟶glucose-6-phosphate⟶fructose-6-phosphate
In this case, you simply add the ΔG°. However, since we need the reverse of the second reaction to end up with the terminal product, fructose-6-phosphate, you'll have to take the opposite sign of ΔG°.
ΔG°,total = −7.28 kJ/mol + 1.67 kJ/mol = -5.61 kJ/mol
Then, the equation to relate ΔG° to the equilibrium constant K is
ΔG° = -RTlnK, where R is the gas constant equal to 0.008317 kJ/mol-K.
-5.61 kJ./mol = -(0.008317 kJ/mol-K)(298 K)(lnK)
lnK = 2.2635
K = e^2.2635
K = 9.62
Answer:
They are Weaker than a chemical
<h2>bond</h2>
corrected by the one in the comment section