Answer:10842.33m/s
Explanation:
F=qvBsine
V=f/(qBsine)
V=(3.5×10^-2)÷(8.4×10^-4×6.7×10^-3×sin35)
V=10842.33m/s
Answer:
3.2 m/s²
Explanation:
Acceleration can be calculated as:
v = u + at (where v is final velocity, u is initial velocity, a is acceleration and t is time)
25 m/s = 9 m/s + a(5 s) (a is unknown)
16 m/s = a(5 s)
a = 3.2 m/s²
We assume that this is a uniform acceleration (meaning that the velocity increases at an equal rate for those 5 seconds).
ANSWER:
0.0562 J
STEP-BY-STEP EXPLANATION:
Angular momentum is expressed in terms of moment of inertia and angular velocity. This is expressed as follows:

Here, I is the angular momentum and ω is the angular velocity.
Angular momentum is mass time the square of the radius of the object. Moment of inertia for a uniform disk is given as,

Here, m is the mass of the disk and r is the radius of the disk.
Replacing:

Convert the units of angular velocity into rad/s.

We replace each data to calculate the angular momentum:

The angular momentum of the uniform disk is 0.0562 J
At the highest point of the trajectory the vertical component will have its zero velocity, and the descent caused by the force of gravity will begin.
Since the ball is thrown with a certain speed, the vertical component reaches its highest point (upwards), until returning to the receiver who will receive the ball with the same vertical component but in the opposite direction (downwards).
Therefore the vertical component will have its highest value at launch.
Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
The height of the diving board is given as

now the speed of the diver is given as

when the diver will jump into the water then his displacement in vertical direction is same as that of height of diving board
So we will have



Part b)

plug in the values in the above equation


Part c)
Horizontal distance moved by the diver is given as



so the distance from the edge of the pool is given as

