Answer:
there it is fella tried on ma own consciousness
Answer:
- <u><em>g) Neither plant should increase by 1 cm in height.</em></u>
Explanation:
See the graph for this question on the figure attached.
The growing of the <em>plant A</em> is represented by the line that goes above the other. At start, that line has a slope that rises about 0.75 cm ( height increase) in 1 day. From the day 2 and forward the slope of the line decreases. The line reaches its highest point about at day 4 and seems to start decreasing. Thus, you should predict that on the day six it <em>most likely </em>does not increase in height.
The growing of the <em>plant B</em> is represented by the line drawn below the other. As for the plant B, the growing decreases with the number of days. Between the days 4 and 5 the line is almost flat, which means that <em>most likely</em> this plant will not grow on the day six or grow less than 0.5 cm.
Thus, for both plants you can say that <em>on day six, most likley, neither should increase by 1 cm in height (</em>option g).
Answer:
-125 kJ
Explanation:
You calculate the energy required to break all the bonds in the reactants. Then you subtract the energy to break all the bonds in the products.
H₂C=CH₂ + H₂ ⟶ H₃C-CH₃
Bonds: 4C-H + 1C=C 1H-H 6C-H + 1C-C
D/kJ·mol⁻¹: 413 612 436 413 347
The formula relating ΔHrxn and bond dissociation energies (D) is
ΔHrxn = Σ(Dreactants) – Σ(Dproducts)
(Note: This is an exception to the rule. All other thermochemical reactions are “products – reactants”. With bond energies, it’s “reactants – products”. The reason comes from the way we define bond energies.)
<em>For the reactant</em>s:
Σ(Dreactants) = 4 × 413 + 1 × 612 + 1 × 436 = 2700 kJ
<em>For the products:</em>
Σ(Dproducts) = 6 × 413 + 1 × 347 = 2825 kJ
<em>For the system</em>
:
ΔHrxn = 2700 - 2825 = -125 kJ
<span>The correct option is: It's solid form is less dense than the liquid form.</span>
Answer:
23.9g of Fe₂O₃ are produced
Explanation:
<em>Are formed when 16.7g of Fe reacts completely...</em>
<em />
Based on the reaction:
4Fe + O₃ → 2Fe₂O₃
<em>4 moles of Iron react per 1 mole of O₃ producing 2 moles of Fe₂O₃.</em>
<em />
To solve this question we need to convert the mass of iron to moles. The ratio of reaction is 2:1 -That is, 2 moles of Fe produce 1 mole of Fe₂O₃-. Thus, we can find the moles of Fe₂O₃ produced and its mass:
<em>Moles Fe -Molar mass: 55.845g/mol-:</em>
16.7g Fe * (1mol / 55.845g) = 0.299 moles of Fe
<em>Moles Fe₂O₃:</em>
0.299 moles Fe * (2 mol Fe₂O₃ / 4 mol Fe) = 0.150 moles Fe₂O₃
<em>Mass Fe₂O₃ -Molar mass 159.69g/mol-:</em>
0.150 moles Fe₂O₃ * (159.69g / mol) =
<h3>23.9g of Fe₂O₃ are produced</h3>
<em />