Unfortunately, you haven't shared any data list which would make braunly users able to help you. The only thing I can suggest you is to write the neutralization reactions, this can make you understand the calculations more or less clearly. Please, next time check your attachments carefully.
Answer:All of Earth's ocean levels rise. The moon's orbit is closer to Earth
Explanation:
1 mole of carbon dioxide contains a mass of 44 g, out of which 12 g are carbon.
Hence, in this case the mass of carbon in 8.46 g of CO2:
(12/44) × 8.46 = 2.3073 g
1 mole of water contains 18 g, out of which 2 g is hydrogen;
Therefore, 2.6 g of water contains;
(2/18) × 2.6 = 0.2889 g of hydrogen.
Therefore, with the amount of carbon and hydrogen from the hydrocarbon we can calculate the empirical formula.
We first calculate the number of moles of each,
Carbon = 2.3073/12 = 0.1923 moles
Hydrogen = 0.2889/1 = 0.2889 moles
Then, we calculate the ratio of Carbon to hydrogen by dividing with the smallest number value;
Carbon : Hydrogen
0.1923/0.1923 : 0.2889/0.1923
1 : 1.5
(1 : 1.5) 2
= 2 : 3
Hence, the empirical formula of the hydrocarbon is C2H3
B.
Explanation:
iehebrkee keen enensjsb sh sry need to get the points?
Answer:- HBr is limiting reactant.
Solution:- The given balanced equation is:

From this equation, There is 2:6 mol or 1:3 mol ratio between Al and HBr. Since we have 8 moles of each, HBr is the limiting reactant as we need 3 moles of HBr for each mol of Al.
The calculations could be shown as:

= 24 mol HBr
From calculations, 24 moles of HBr are required to react completely with 8 moles of Al but only 8 moles of it are available. It clearly indicates, HBr is limiting reactant.