Answer:
2.When they reach the bottom of the fall
Explanation:
The potential energy of the waterfall is maximum at the maximum height and decreases with decrease in height. Based on the law of conservation of mechanical energy, as the potential energy of the water fall is decreasing with decrease in height of the fall, its kinetic energy will be increasing and the kinetic energy will be maximum at zero height (bottom of the fall).
Thus, the correct option is "2" When they reach the bottom of the fall
Answer:
The value is 
Explanation:
From the question we are told that
The horizontal speed is 
The horizontal distance is 
Generally the time taken by the hot magma in air before landing is mathematically represented as

=> 
=> 
Generally the initial vertical velocity of the magma when it was lunched is

Then the final velocity of the magma when it hits the ground is mathematically represented s

Here the negative sign mean that the direction of the velocity is towards the negative y -axis
So

=> 
Answer:

Explanation:
The time lag between the arrival of transverse waves and the arrival of the longitudinal waves is defined as:

Here d is the distance at which the earthquake take place and
is the velocity of the transverse waves and longitudinal waves respectively. Solving for d:

Answer:
7.78x10^-8T
Explanation:
The Pointing Vector S is
S = (1/μ0) E × B
at any instant, where S, E, and B are vectors. Since E and B are always perpendicular in an EM wave,
S = (1/μ0) E B
where S, E and B are magnitudes. The average value of the Pointing Vector is
<S> = [1/(2 μ0)] E0 B0
where E0 and B0 are amplitudes. (This can be derived by finding the rms value of a sinusoidal wave over an integer number of wavelengths.)
Also at any instant,
E = c B
where E and B are magnitudes, so it must also be true at the instant of peak values
E0 = c B0
Substituting for E0,
<S> = [1/(2 μ0)] (c B0) B0 = [c/(2 μ0)] (B0)²
Solve for B0.
Bo = √ (0.724x2x4πx10^-7/ 3 x10^8)
= 7.79 x10 ^-8 T
Answer:
b) lattice energy
Explanation:
A solution is said to have colligative property when the property depends on the solute present in the solution.
Colligative property depend upon on the solute particle or the ion concentration not on the identity of solute.
osmotic pressure, vapor pressure lowering , boiling point elevation and freezing point lowering all depend upon solute concentration so they will not have colligative property so, the answer remains option 'b' which is lattice energy.