Answer:
Explanation:We should know that weight = mass * gravity.
That is weight equals mass times gravity.
Gravity is a force of attraction between any two bodies in the universe. It is directly proportional to product of their masses and inversely proportional to the square of the distance between them.
Gravity is generally measured in terms of acceleration due to gravity, denoted as g. For Earth it is, 9.8 m/s². And for moon, it is about 1.62 m/s².
On Earth, your weight is 70 kg = W
W = mass x 9.8
70 = mass x 9.8
Your mass is 70/ 9.8
i.e approximately 7.14
Weight at the Moon, W' = 7.14 x 1.62
Hence, your weight on the surface of the moon is just 11.56 kg.
Congratulations, you've lost about 58.14 kilograms without any hard exercise. And you're as light as a Sweedish Vallhund! Cheers!
Answer:
<em>1.228 x </em><em> mm </em>
<em></em>
Explanation:
diameter of aluminium bar D = 40 mm
diameter of hole d = 30 mm
compressive Load F = 180 kN = 180 x N
modulus of elasticity E = 85 GN/m^2 = 85 x Pa
length of bar L = 600 mm
length of hole = 100 mm
true length of bar = 600 - 100 = 500 mm
area of the bar A = = = 1256.8 mm^2
area of hole a = = = 549.85 mm^2
Total contraction of the bar =
total contraction =
==> = <em>1.228 x </em><em> mm </em>
Answer:
Yes
Explanation:
Eclipses: Eclipses are also known as game of shadows where one object comes between the star(light source) and another object in a straight line such that the shadow of one object falls on other object. This can occur when the apparent size of the star and the object is almost same.
Talking about the Earth, the geometry is such that the Moon and the Sun are of same apparent size as seen from the Earth. Thus Lunar and Solar eclipse can be seen from the Earth. If we were to go on any other planet the same phenomenon can be seen provided the apparent size of moon and the Sun from that planet is same.
We have seen and recorded many such eclipses on Jupiter. These are from the perspective of Earth. When the moons of Jupiter comes exactly between the Sun and Jupiter the shadow of moon will fall on Jupiter. The places where the shadow falls, one will see a solar eclipse.
Answer:
The answer would be 0.04ohms.
Explanation:
Hopefully this helps
The momentum of the
x-ray photon is p = h/lambda . Lambda is the wavelength (0.30nm=3x10^(-9)m) and
h is Planck's constant,(h=6.62607004 × 10-34<span> m2 kg / s).The
momentum is: 2.2 x 10^(-25).</span>
The momentum can be calculated
also as: p=mv, where m is the mass of the electron and v is the speed.
So v=p/m,p is known,and
also the mass of the electron (m=9.10938356 × 10-31<span> kilograms).</span>
v=2.2 x 10^(-25)/9.10938356
× 10-31<span> kilograms=0.24 x 10^6 m/s</span>