Answer:
7.11x10^-3
Explanation:
We are to get the volume rate of flows
1/2pv1² + pl = 1/2pv2²
Such that A1V1 = A2V2
V1 = A2V2/A1
From the attachment I uploaded, we have a formula named equation 1 from which I have plugged in these values
P2 = 33000
P2 = 24000
P = 1000
r2 = 2.25
r1 = 4
When we put these values into the equation,
V2 = 4.47
A2V2 = pi(0.0225)²x4.47
= 7.7x19^-3m³/s
Answer:
117.6°
Explanation:
The vertical component of a force directed at some angle α from the vertical is ...
F·cos(α)
We want the vertical components of the wolf's force (Fw) and Red's force (Fr) to total zero. So for some angle from vertical α, Red's force will satisfy ...
Fw·cos(25°) + Fr·cos(α) = 0
cos(α) = -Fw/Fr·cos(25°) ≈ -(6.4 N)/(12.5 N)·0.906308 ≈ -0.464030
α ≈ arccos(-0.464030) ≈ 117.6°
Red was pulling at an angle of about 117.6° from the vertical.
_____
<em>Additional comment</em>
That's about 27.6° below the horizontal.
It's B because when you throw something it doesn't go up it slowly descends downward
Answer:
11.3 m/s
Explanation:
KE₁ = KE₂
½m₁v₁² = ½m₂v₂²
½ (2 kg) v² = ½ (4 kg) (8 m/s)²
v ≈ 11.3 m/s
Answer:
a) 4500 cycles b) 0.0667s c) 6.67s
Explanation:
a) 15 Hz= 15 cycles/ s
5 mins= 300s
15 cycles/s * 300s= 4500 cycles
b) Period= 1/ frequency
Period= 1/ 15 cycles/s
Period= 0.0667s
c) Period * number of revolutions= time
0.0667 * 100= 6.67s