Answer:
Because the weight depends of the gravity
Explanation:
This is because weight and mass are different, in order to better understand this problem we will apply an example with real values, which will help us to determine a person's weight.
A man has a mass of 80 [kg] on Earth when measuring his weight he realizes that it is 784.9 [N] and on the moon it is 130.8 [N]
<u>On Earth</u>
<u />
![g_{e} = 9.81[m/s^2]\\g_{m} = 1.635[m/s^2]](https://tex.z-dn.net/?f=g_%7Be%7D%20%3D%209.81%5Bm%2Fs%5E2%5D%5C%5Cg_%7Bm%7D%20%3D%201.635%5Bm%2Fs%5E2%5D)
Where:
g = gravity
<u>Weight on the moon</u>
<u />
Wm = 80 * 1.635
Wm = 130.8[N]
<u>Weight on the earth</u>
<u />
We = 80 * 9.81
We = 784.8[N]
<u />
In this way we can see that the weight depends on the gravity of where the person is located.
Answer:
The resultant velocity is 
Explanation:
Apply the law of conservation of momentum

Where
is the mass of the Luxury Liner = 40,000 ton
is the velocity of Luxury Liner = 20 knots due west
mass of freighter = 60,000
is the velocity of freighter = 10 knots due north
Apply the law of conservation of momentum toward the the west direction

So the equation would be

Substituting values

Where
the final velocity due west
Making
the subject


Apply the law of conservation of momentum toward the the north direction

So the equation would be

Where
the final velocity due north
Making
the subject


The resultant velocity is



What results do we communicate?
Answers all in picture below
: