Answer:
a) [volts] = [N m / C],
b) The lines or surface that has the same potential are called equipotential
c) the equipotential lines must also be perpendicular to the electric field lines
Explanation:
a) find the units of the volt
the electric potential energy is
V = k q / r
V = [N m² / C²] C / m
V = [N m / C]
The electric potential is defined as
V = E .s
V = [N / C] [m]
V = [N m / C] = [volt]
we see that in the two expressions the same result is obtained therefore the volt is
[volts] = [N m / C]
b) The lines or surface that has the same potential are called equipotential surfaces, the great utility of these lines or surfaces is that a face can be displaced on it without doing work.
c) The electric potential is defined as the gradient of the electric field
v =
therefore the equipotential lines must also be perpendicular to the electric field lines
The subatomic particles that acts like a mini-magnet is electron. Electrons are negatively charged sub atomic particles in an atom. The electron spin is a property of an electron that makes it behave like it's spinning; a spinning electron produces a magnetic field that makes it behave like a tiny magnet in an atom.
Answer:
It is simply molecular nitrogen (N2). Nitrogen, in its molecular form, consists of two nitrogen atoms bound together with a tripple bond
Explanation:
Answer:
S1 = 1/2 g t^2 distance stone falls in time t
S2 = Vy t - 1/2 g t^2 distance thrown stone rises in time t
H = 49 = S1 + S2 = Vy t
t = 49 / 40 sec time when stones meet
Check:
Stone 1 falls: 1/2 g t^2 = 1/2 * 9.8 * (49 / 40)^2 = 7.35 m
Stone 2 rises : 40 * (49 / 40) - 1/2 * 9.8 (49 / 40)^2 = 41.65 m