Answer:
d
Explanation:
the farther you are from the equater the dolder it is.
Answer:
HA + KOH → KA + H₂O
Explanation:
The unknown solid acid in water can release its proton as this:
HA + H₂O → H₃O⁺ + A⁻
As we have the anion A⁻, when it bonded to the cation K⁺, salt can be generated, so the reaction of HA and KOH must be a neutralization one, where you form water and a salt
HA + KOH → KA + H₂O
It is a neutralization reaction because H⁺ from the acid and OH⁻ from the base can be neutralized as water
Answer:
0.121 moles of aluminum metal are required to produce 4.04 L of hydrogen gas at 1.11 atm and 27 °C by reaction with HCl
Explanation:
This is the reaction:
2 Al(s) + 6 HCl(aq) → 2 AlCl₃ (aq) + 3 H₂(g)
To make 3 moles of H₂, we need 2 moles of Al.
By conditions given, we will find out how many moles of H₂ do we have.
Let's use the Ideal Gas Law
P. V = n . R . T
1.11 atm . 4.04L = n . 0.082 L.atm/mol.K . 300K
(1.11 atm . 4.04L) / (0.082 mol.K/L.atm . 300K) = n
0.182 mol = n
So the rule of three will be:
If 3 moles of H₂ came from 2 moles of Al
0.182 moles of H₂ will come from x
(0.182 .2) / 3 = 0.121 moles
Answer:
P₂ = 140 KPa
Explanation:
Given data:
Initial volume = 8.0 L
Final volume = 4.0 L
Initial pressure = 70 KPa
Final pressure = ?
Solution:
According to Boyle's law
P₁V₁ = P₂V₂
P₂ = P₁V₁ / V₂
P₂ = 70 KPa ×8.0 L/4.0 L
P₂ = 560 KPa .L / 4.0 L
P₂ = 140 KPa
Answer:
C₇H₁₆ + 32CoF₃ —> C₇F₁₆ + 16HF + 32CoF₂
Explanation:
C₇H₁₆ + CoF₃ —> C₇F₁₆ + HF + CoF₂
The above equation can be balance as illustrated below:
C₇H₁₆ + CoF₃ —> C₇F₁₆ + HF + CoF₂
There are 16 atoms of H on the left side and 1 atom on the right side. It can be balance by writing 16 before HF as shown below:
C₇H₁₆ + CoF₃ —> C₇F₁₆ + 16HF + CoF₂
There are 3 atoms of F on the left side and a total of 34 atoms on the right side. It can be balance by writing 32 before CoF₃ and 32 before CoF₂ as shown below:
C₇H₁₆ + 32CoF₃ —> C₇F₁₆ + 16HF + 32CoF₂
Now, the equation is balanced.