Polarity is the chemical property based on the electric charge and orientation of the poles. Al−O>H−Br>As−S is arranged in decreasing order of polarity. Thus, option d is correct.
<h3>What is polarity?</h3>
Polarity is a chemical property of the distribution of the electrical charges over their respective atom in the molecule joined by the bonds. The relation between the polarity and the difference in electronegativity is directly proportional.
The electronegativity difference between the elements are:
- Al−O = 1.8
- H−Br = 0.8
- As−S = 0.4
As the electronegativity difference between Al−O = 1.8 is the highest it will have the highest polarity followed by H−Br = 0.8, and As−S = 0.4, with the lowest polarity.
Therefore, option D. Al−O>H−Br>As−S is arranged in decreasing order of polarity.
Learn more about electronegativity here:
brainly.com/question/25217877
#SPJ1
<h3>
Answer:</h3>
5.71 × 10² nm
<h3>
Explanation:</h3>
The product of wavelength and frequency of a wave gives the speed of the wave.
Therefore;
Velocity of wave = Wavelength × Frequency
c = f ×λ
In our case;
Frequency = 5.25 × 10^14 Hz
Speed of light = 2.998 × 10^8m/s
But;
λ = c ÷ f
= 2.998 × 10^8m/s ÷ 5.25 × 10^14 Hz
= 5.71 × 10^-7 m
But; 1 M = 10^9 nm
Therefore;
wavelength = 5.71 × 10^-7 × 10^9
= 5.71 × 10² nm
The wavelength of light wave 5.71 × 10² nm
Answer:
A. releases a large amount of heat
Explanation:
A reaction is said to be spontaneous if it can proceed on its own without the addition of external energy. A spontaneous reaction is not determined by the length of time, because some spontaneous reactions are completed after a long period of time. They are exothermic in nature. An example is the conversion of graphite to carbon which takes a long period of time to complete. Spontaneous reactions are known to increase entropy in a system. Entropy is the rate of disorder in a system.
In the combustion of fire, energy is released to the surroundings as there is a decrease in energy. This is an example of a spontaneous reaction because it is an exothermic reaction, which causes an increase in entropy and a decrease in energy.
Answer:
The correct answer is B. It is spontaneous only at low temperatures.
Explanation:
In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum of reversible work that may be performed by a thermodynamic system at a constant temperature and pressure.
The spontaneity of a reaction is given by the equation:
ΔG = ΔH - TΔS
where:
ΔH: enthalpy variation
T: absolute temperature
ΔS: entropy variation
As the reaction is exothermic, ΔH<0
As the reaction order increases (the reagents are solid and gas and their product is solid), ΔS<0
Therefore, the reaction will be spontaneous when ΔG is negative.
ΔG = ΔH - TΔS
That is, the entropy term must be smaller than the enthalpy term.
Hence, the reaction will be spontaneous only at low temperatures.
Answer:
The molar mass of lysine using the ideal gas equation for this problem is 146.25 g/mole.
Explanation:
The ideal gas equation PV = nRT, was derived from the ABC laws (Avogadros, Boyles and Charles laws). We need to obtain the value for the number of moles n.
The parameters of this equation are:
P = 1.918 atm
V = 750.0mL = 0.75L
n = ?
R = 0.0821
T = 25 degree celcius = 25 + 273 = 298 degree kelvin.
From this formular, n = (PV)/(RT)
n = (1.918 X 0.75)/(0.0821 X 298 )
n = 0.0588
n, no of mole = mass/molar mass
0.0588 = 8.6/MM
MM = 8.6/0.0588
MM = 146.25g/mole.