Answer:
900
Explanation:
v = s / t = 9000m / 10 s = 900m/s
m = mass = 5 kg
= initial velocity = 100 m/s
= final velocity = ?
I = impulse = 30 Ns
Using the impulse-change in momentum equation
I = m(
-
)
30 = 5 (
- 100)
= 106 m/s
A. Average speed is weighted mean (1 × 2 + 2 × 3 + 3 × 5 + 4 × 7 + 3 × 9 + 2 × 12.5)/15 = (2 + 6 + 15 + 28 + 27 + 25)/15 = 103/15 = 6.867 b. RMS is square root of 1/15 times sum of squares of speeds Sum of squares is 4 + 9 + 9 + 25 + 25 + 25 + 49 + 49 + 49 + 49 + 81 + 81 + 81 +156.25 + 156.25 = 848.5
c. RMS speed = √(848.5/15) = 7.521
Most likely the speed is the peak in the speed distribution, which is 7.
Answer:
1408.685 KN/C
Explanation:
Given:
R = 0.45 m
σ = 175 μC/m²
P is located a distance a = 0.75 m
k = 8.99*10^9
- The Electric Field Strength E of a uniformly solid disk of charge at distance a perpendicular to disk is given by:

part a)
Electric Field strength at point P: a = 0.75 m

part b)
Since, R >> a, we can approximate a / R = 0 ,
Hence, E simplified relation becomes:

E = σ / 2*e_o
part c)
Since, a >> R, we can approximate. that the uniform disc of charge becomes a single point charge:
Electric Field strength due to point charge is:
E = k*δ*pi*R^2 / a^2
Since, R << a, Surface area = δ*pi
Hence,
E = (k*δ*pi/a^2)
<span>The regioin is titled towqrd the Sun during polar day. (C)
(The same exact thing happens in areas south of the Antarctic Circle
in the southern hemisphere. The only difference is that the whole thing
is spelled better in the South.)</span>