Heat Transfer Lab
The following represents a lab set up for heat transfer. The cup on the left started with boiling water at 100 degrees C and the cup on the right has water at 20 degrees C. There is an aluminum bar between the two cups allowing heat to transfer from one cup into the other. The set up will be left alone for 20 minutes and temperatures of each cup of water will be recorded every minute for 20 minutes.
mag-aral ka
Answer: A 0.20 M solution of HCl with a volume of 15.0 mL is exactly neutralized by the 0.10 M solution of NaOH with 3 mL volume.
Explanation:
Given:
= 0.20 M,
= 15.0 mL
= 0.10 M,
= ?
Formula used is as follows.

Substitute the values into above formula s follows.
![M_{1}V_{1} = M_{2}V_{2}\\0.20 M ]times 15.0 mL = 0.10 M ]times V_{2}\\V_{2} = 30 mL](https://tex.z-dn.net/?f=M_%7B1%7DV_%7B1%7D%20%3D%20M_%7B2%7DV_%7B2%7D%5C%5C0.20%20M%20%5Dtimes%2015.0%20mL%20%3D%200.10%20M%20%5Dtimes%20V_%7B2%7D%5C%5CV_%7B2%7D%20%3D%2030%20mL)
Thus, we can conclude that a 0.20 M solution of HCl with a volume of 15.0 mL is exactly neutralized by the 0.10 M solution of NaOH with 3 mL volume.
<u>Answer:</u> The molality of
solution is 0.782 m
<u>Explanation:</u>
Molality is defined as the amount of solute expressed in the number of moles present per kilogram of solvent. The units of molarity are mol/kg. The formula used to calculate molality:
.....(1)
Given values:
Moles of
= 0.395 mol
Mass of solvent (water) = 0.505 kg
Putting values in equation 1, we get:

Hence, the molality of
solution is 0.782 m
The answer is: hydrogen peroxide, H2O2.
H₂O₂(hydrogen peroxide) is pale blue, clear, inorganic liquid.
It is liquid because hydrogen bonds between molecules.
Hydrogen bond is an electrostatic attraction between two polar groups that occurs when a hydrogen atom (H), covalently bound to a highly electronegative atom such as flourine (F), oxygen (O) and nitrogen (N) atoms.
Because of hydrogen bonds, hydrogen peroxide has higher melting and boiling temperatures than other molecules.
Answer:
Explanation:
A. White blood cells have many lysosomes because they need to produce a lot of glucose and oxygen.
Lysosomes are found in all animal cells, but are most numerous in disease-fighting cells, such as white blood cells. This is because white blood cells must digest more material than most other types of cells in their quest to battle bacteria, viruses, and other foreign intruders.