1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Simora [160]
3 years ago
6

Which examples best demonstrate likely tasks for Health, Safety, and Environmental Assurance workers? check all that apply

Engineering
2 answers:
Over [174]3 years ago
6 0

Sam, Elijah, Joy Those are 100% correct from my human knowledge

Ira Lisetskai [31]3 years ago
6 0

Answer:

i just did the thing on edge

Explanation:

You might be interested in
Errors in the output voltage of an actual integrated circuit operational amplifier can be caused by : Select one:
natta225 [31]

Answer:

Option B

Explanation:

An operational amplifier usually has a high open loop gain of around 10^5 which allows a wide range get of feed back levels in order to achieve the desired performance so therefore a low open loop gain reduces the range feed back level thereby reducing the performance which can cause errors in the output voltage.

7 0
3 years ago
In order to fill a tank of 1000 liter volume to a pressure of 10 atm at 298K, an 11.5Kg of the gas is required. How many moles o
lesya [120]

Answer:

The molecular weight will be "28.12 g/mol".

Explanation:

The given values are:

Pressure,

P = 10 atm

  = 10\times 101325 \ Pa

  = 1013250 \ Pa

Temperature,

T = 298 K

Mass,

m = 11.5 Kg

Volume,

V = 1000 r

   = 1 \ m^3

R = 8.3145 J/mol K

Now,

By using the ideal gas law, we get

⇒ PV=nRT

o,

⇒ n=\frac{PV}{RT}

By substituting the values, we get

       =\frac{1013250\times 1}{8.3145\times 298}

       =408.94 \ moles

As we know,

⇒ Moles(n)=\frac{Mass(m)}{Molecular \ weight(MW)}

or,

⇒        MW=\frac{m}{n}

                   =\frac{11.5}{408.94}

                   =0.02812 \ Kg/mol

                   =28.12 \ g/mol

3 0
3 years ago
The output side of an ideal transformer has 35 turns, and supplies 2.0 A to a 24-W device. Ifthe input is a standard wall outlet
Crank

Answer:

The current drawn from the outlet is 0.2 A

The number of turns on the input side is 350 turns

Explanation:

Given;

number of turns of the secondary coil, Ns = 35 turns

the output current, I_s = 2 A

power supplied, P_s = 24 W

the standard wall outlet in most homes = 120 V = input voltage

For an ideal transformer; output power = input power

the current drawn from the outlet is calculated;

I_pV_p = P_s\\\\I_p = \frac{P_s}{V_p} = \frac{24}{120} = 0.2 \ A

The number of turns on the input side is calculated as;

\frac{N_p}{N_s} = \frac{I_s}{I_p}  \\\\N_p = \frac{N_sI_s}{I_p} \\\\N_p = \frac{35 \times 2}{0.2} \\\\N_p = 350 \ turns

4 0
3 years ago
Calculate the viscosity(dynamic) and kinematic viscosity of airwhen
nikitadnepr [17]

Answer:

(a) dynamic viscosity = 1.812\times 10^{-5}Pa-sec

(b) kinematic viscosity = 1.4732\times 10^{-5}m^2/sec

Explanation:

We have given temperature T = 288.15 K

Density d=1.23kg/m^3

According to Sutherland's Formula  dynamic viscosity is given by

{\mu} = {\mu}_0 \frac {T_0+C} {T + C} \left (\frac {T} {T_0} \right )^{3/2}, here

μ = dynamic viscosity in (Pa·s) at input temperature T,

\mu _0= reference viscosity in(Pa·s) at reference temperature T0,

T = input temperature in kelvin,

T_0 = reference temperature in kelvin,

C = Sutherland's constant for the gaseous material in question here C =120

\mu _0=4\pi \times 10^{-7}

T_0 = 291.15

\mu =4\pi \times 10^{-7}\times \frac{291.15+120}{285.15+120}\times \left ( \frac{288.15}{291.15} \right )^{\frac{3}{2}}=1.812\times 10^{-5}Pa-swhen T = 288.15 K

For kinematic viscosity :

\nu = \frac {\mu} {\rho}

kinemic\ viscosity=\frac{1.812\times 10^{-5}}{1.23}=1.4732\times 10^{-5}m^2/sec

3 0
3 years ago
a cantilever beam 1.5m long has a square box cross section with the outer width and height being 100mm and a wall thickness of 8
djverab [1.8K]

Answer:

a) 159.07 MPa

b) 10.45 MPa

c) 79.535 MPa

Explanation:

Given data :

length of cantilever beam = 1.5m

outer width and height = 100 mm

wall thickness = 8mm

uniform load carried by beam  along entire length= 6.5 kN/m

concentrated force at free end = 4kN

first we  determine these values :

Mmax = ( 6.5 *(1.5) * (1.5/2) + 4 * 1.5 ) = 13312.5 N.m

Vmax = ( 6.5 * (1.5) + 4 ) = 13750 N

A) determine max bending stress

б = \frac{MC}{I}  =  \frac{13312.5 ( 0.112)}{1/12(0.1^4-0.084^4)}  =  159.07 MPa

B) Determine max transverse shear stress

attached below

   ζ = 10.45 MPa

C) Determine max shear stress in the beam

This occurs at the top of the beam or at the centroidal axis

hence max stress in the beam =  159.07 / 2 = 79.535 MPa  

attached below is the remaining solution

6 0
3 years ago
Other questions:
  • A 50 (ohm) lossless transmission line is terminated in a load with impedance Z= (30-j50) ohm. the wavelength is 8cm. Determine:
    5·1 answer
  • Model the real world idea of an Address. 123 Main Street Apt #2 Small Town, Iowa 55555 USA Write a class called Address, follow
    11·1 answer
  • Counter argument for why engineers dont make a positive change in the world.​
    6·1 answer
  • Complete the following sentence.
    13·1 answer
  • In water and wastewater treatment processes a filtration device may be used to remove water from the sludge formed by a precipit
    10·1 answer
  • Air is compressed in a well insulated compressor from 95 kPa and 27 C to 600 kPa and 277 C. Use the air tables; assume negligibl
    11·1 answer
  • Roku internet service providet​
    11·1 answer
  • How might an operations manager alter operations to meet customer demand? Name at least two ways.
    7·1 answer
  • What is the name of the type of rocker arm stud that does not require a valve adjustment?
    12·1 answer
  • Develop a simple Business plan as an entrepreneur​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!