We can write the balanced equation for the synthesis reaction as
H2(g) + Cl2(g) → 2HCl(g)
We use the molar masses of hydrogen chloride gas HCl and hydrogen gas H2 to calculate for the mass of hydrogen gas H2 needed:
mass of H2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol H2 / 2 mol HCl) *
(2.02 g H2 / 1 mol H2)
= 4.056 g H2
We also use the molar masses of hydrogen chloride gas HCl and chlorine gas CL2 to calculate for the mass of hydrogen gas H2:
mass of CL2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol Cl2 / 2 mol HCl) *
(70.91 g Cl2 / 1 mol Cl2)
= 142.4 g Cl2
Therefore, we need 4.056 grams of hydrogen gas and 142.4 grams of chlorine gas to produce 146.4 grams of hydrogen chloride gas.
Explanation:
<em><u>Solutions. 1. If 47 g of KCl dissolved in enough water to give 375 mL of soloution, what is the molarity ... vo volume of solute . ... v/v ethanol, how much 95% v/v ethanol ... prepare 200. mL ...</u></em>
Answer:
The elements in the alkaline earth metals group; beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra), have two electrons in their outer electronic shell.
Explanation:
It has to be understood that 2 moles of oxygen are there in each mole of PbO2. Then it has to be calculated for 2 moles of oxygen.
Amount of oxygen = 2 * 5.43 moles
= 10.86 moles
Now it is also a fact that each mole of H2O contains 1 mole of oxygen. Then it can be easily concluded that 10.86 moles of water will be produced. I hope the procedure is clear enough for you to understand.
Actually, I strongly believe it is a switch.