Answer:
E
Explanation:
all are proof Eeeeeeeeeee
Answer:

Explanation:
For this problem, we can use Boyle's law, which states that for a gas at constant temperature, the product between pressure and volume remains constant:

which can also be rewritten as

In our case, we have:
is the initial pressure
is the initial volume
is the final pressure
Solving for V2, we find the final volume:

Answer: If there is a higher friction, the opposition force is higher so that it can reduce our speed. So, a factor that affects friction is the roughness or smoothness of the surface of the object. In comparison of the table with the fabric, the fabric will have a more opposition force. As the surface of the fabric is usually rougher than the surface of a smooth table. As there is more friction on a fabric, we will feel more opposition force on our finger tip.
Hope it helped! :>
Answer:
The center of mass of the two-ball system is 7.05 m above ground.
Explanation:
<u>Motion of 0.50 kg ball:</u>
Initial speed, u = 0 m/s
Time = 2 s
Acceleration = 9.81 m/s²
Initial height = 25 m
Substituting in equation s = ut + 0.5 at²
s = 0 x 2 + 0.5 x 9.81 x 2² = 19.62 m
Height above ground = 25 - 19.62 = 5.38 m
<u>Motion of 0.25 kg ball:</u>
Initial speed, u = 15 m/s
Time = 2 s
Acceleration = -9.81 m/s²
Substituting in equation s = ut + 0.5 at²
s = 15 x 2 - 0.5 x 9.81 x 2² = 10.38 m
Height above ground = 10.38 m
We have equation for center of gravity

m₁ = 0.50 kg
x₁ = 5.38 m
m₂ = 0.25 kg
x₂ = 10.38 m
Substituting

The center of mass of the two-ball system is 7.05 m above ground.
Answer:
y₀ = 10.625 m
Explanation:
For this exercise we will use the kinematic relations, where the upward direction is positive.
y = y₀ + v₀ t - ½ g t²
in the exercise they indicate the initial velocity v₀ = 8 m / s.
when the rock reaches the ground its height is zero
0 = y₀ + v₀ t - ½ g t²
y₀i = -v₀ t + ½ g t²
let's calculate
y₀ = - 8 2.5 + ½ 9.8 2.5²
y₀ = 10.625 m