The fluid that is being passed through the syringe and needle is incompressible, which means that it will transmit pressure equally. Therefore, the pressure on the plunger will be equivalent to the pressure on the needle. We also know that:
Pressure = Force / Area
Pressure on plunger = 4 / (π*(0.012/2)²)
Pressure on plunger = 35.4 kPa
Pressure on needle = 35.4 kPa
35.4 kPa = F / (4 / (π*(0.0025/2)²)
F = 0.17 N
The force on the needle is 0.17 N
We have discovered 786 planets. Most of which were only recently discovered.
Answer:
The maximum energy stored in the combination is 0.0466Joules
Explanation:
The question is incomplete. Here is the complete question.
Three capacitors C1-11.7 μF, C2 21.0 μF, and C3 = 28.8 μF are connected in series. To avoid breakdown of the capacitors, the maximum potential difference to which any of them can be individually charged is 125 V. Determine the maximum energy stored in the series combination.
Energy stored in a capacitor is expressed as E = 1/2CtV² where
Ct is the total effective capacitance
V is the supply voltage
Since the capacitors are connected in series.
1/Ct = 1/C1+1/C2+1/C3
Given C1 = 11.7 μF, C2 = 21.0 μF, and C3 = 28.8 μF
1/Ct = 1/11.7 + 1/21.0 + 1/28.8
1/Ct = 0.0855+0.0476+0.0347
1/Ct = 0.1678
Ct = 1/0.1678
Ct = 5.96μF
Ct = 5.96×10^-6F
Since V = 125V
E = 1/2(5.96×10^-6)(125)²
E = 0.0466Joules
That's the cool thing about free fall. The amount of time it takes to fall remains the same.
In this case, a ball that is simply dropped from rest will fall at the same rate as a ball that had some umph in the horizontal direction.