2,320 miles, or you can say 593,000 cubic feet per second.
Answer:
Explanation:
1. the 1/2 reaction that occurs at the cathode
3Cl2(g) +6e^- -------------> 6Cl^- (aq)
2 the 1/2 reaction that occurs at the anode
2MnO2(s) + 8OH^-(aq) ----------> 2MnO4^- (aq) + 4H2O(l) +6e^-
2MnO2(s) + 8OH^-(aq) ----------> 2MnO4^- (aq) + 4H2O(l) +6e^-
E0 = -0.59v
3Cl2(g) +6e^- -------------> 6Cl^- (aq)
E0 = 1.39v
3Cl2 (g) + 2MnO2 (s) + 8OH^(−) (aq)---------> 6Cl^(−) (aq) + 2MnO4^(−) (aq) + 4H2O (l)
E0cell = 0.80v
Valency is the number of electrons lost or gained by an atom to attain an stable configuration. Valency is important when writing the formula of chemical compounds in chemistry. Strontium has a valency of 2 while sulfite ion (radicle) has a valency of 2. Therefore, the chemical formula of strontium sulfite is written as SrSO3.
Answer:
Therefore the equilibrium number of vacancies per unit cubic meter =2.34×10²⁴ vacancies/ mole
Explanation:
The equilibrium number of of vacancies is denoted by
.
It is depends on
- total no. of atomic number(N)
- energy required for vacancy
- Boltzmann's constant (k)= 8.62×10⁻⁵ev K⁻¹
- temperature (T).

To find equilibrium number of of vacancies we have find N.

Here ρ= 8.45 g/cm³ =8.45 ×10⁶m³
= Avogadro Number = 6.023×10²³
= 63.5 g/mole

g/mole
Here
=0.9 ev/atom , T= 1000k
Therefore the equilibrium number of vacancies per unit cubic meter,

=2.34×10²⁴ vacancies/ mole