Explanation:
It is known that specific heat of water is 4.184
and atomic mass of tin is 118.7 g/mol. For the given situation,

Let us assume that,
= mass of Sn
= mass of
Therefore, heat energy expression for heat lost and gained is as follows.





= 0.207 
For, 118.7 g the specific heat of tin will be calculated as follows.

= 24.5 
Thus, we can conclude that specific heat of tin is 24.5
.
Answer:
ΔG°′ = 1.737 KJ/mol
Explanation:
The reaction involves the transfer of two electrons in the form of hydride ions from reduced coenzyme Q, CoQH₂ to fumarae to form succinate and oxidized coenzyme Q, CoQ.
The overall equation of reaction is as follows:
fumarate²⁻ + CoQH₂ ↽⇀ succinate²⁻ + CoQ ; ΔE∘′=−0.009 V
Using the equation for standard free energy change; ΔG°′ = −nFΔE°′
where n = 2; F = 96.5 KJ.V⁻¹.mol⁻¹; ΔE°′ = 0.009 V
ΔG°′ = - 2 * 96.5 KJ.V⁻¹.mol⁻¹ * 0.009 V
ΔG°′ = 1.737 KJ/mol
Mass to volume
M^3 --> cm^3
Cm^3 --> mL
Centi = 10*-2
7.379*10-4 / 1*10-2 = .07379
First we find for the wavelength of the photon released due
to change in energy level. We use the Rydberg equation:
1/ʎ = R [1/n1^2 – 1/n2^2]
where,
ʎ is the wavelength
R is the rydbergs constant = 1.097×10^7 m^-1
n1 is the 1st energy level = 1
n2 is the higher energy level = infinity, so 1/n2 = 0
Calculating for ʎ:
1/ʎ = 1.097×10^7 m^-1 * [1/1^2 – 0]
ʎ = 9.1158 x 10^-8 m
Then calculate the energy using Plancks equation:
E = hc/ʎ
where,
h is plancks constant = 6.626×10^−34 J s
c is speed of light = 3x10^8 m/s
E = (6.626×10^−34 J s * 3x10^8 m/s) / 9.1158 x 10^-8 m
E = 2.18 x 10^-18 J = 2.18 x 10^-21 kJ
This is still per atom, so multiply by Avogadros number =
6.022 x 10^23 atoms / mol:
E = (2.18 x 10^-21 kJ / atom) * (6.022 x 10^23 atoms /
mol)
E = 1312 kJ/mol
The density of the rectangular block in g/mL is 7.0.
<u>Given the following data:</u>
- Mass of block = 22.8 gra1.94 kg
- Length of block = 3.21 cm
- Height of block = 1.84 in.
To find the density of the block in g/mL:
First of all, we would determine the volume of the rectangular block by using the following formula:
×
× 
<u>Conversion:</u>
1 in = 2.54 cm
5.83 in = X cm
Cross-multiplying, we have:

×
× 
Volume = 277.16 cubic centimeters.
<u>Note</u>: Milliliter (mL) is the same as cubic centimeters.
1000 grams = 1 kg
Y grams = 1.94 kg
Cross-multiplying, we have:
Y = 1940 grams
Now, we can find the density:

<em>Density </em><em>= 7</em><em>.0 g/mL</em>
Therefore, the density of the rectangular block in g/mL is 7.0.
Read more: brainly.com/question/18320053