<h2>Answer:</h2>
The refractive index is 1.66
<h2>Explanation:</h2>
The speed of light in a transparent medium is 0.6 times that of its speed in vacuum
.
Refractive index of medium = speed of light in vacuum / speed of light in medium
So
RI = 1/0.6 = 5/3 or 1.66
Explanation:
Since, entropy is the measure of degree of randomness. So, more randomly the molecules of a substance are moving more will be its entropy.
- For example, when a solid melts then it means heat is absorbed by it due to which its molecules have gained energy. As a result, they collide with each other and hence, entropy will increase.
- Evaporation of a liquid will also cause the liquid to change its state from liquid to gas. This means molecules will go far away from each other leading to an increase in the entropy.
- Sublimation is a process of conversion of a solid into gaseous phase without going through liquid phase. So, in this case also entropy will increase due to gain in energy by the molecules of a solid.
- In freezing, molecules of a substance come closer to each other and acquire less energy. Hence, entropy decreases.
- Mixing is a process of combining two or more substances physically with each other. This leads to increase in entropy of a substance.
- In separation molecules are separated from each other leading to a decrease in energy. Hence, entropy will also decrease.
- Diffusion is a process in which molecules are able to rapidly move from one place to another. Hence, entropy increases when diffusion takes place.
Thus, we can conclude that melting of a solid, evaporation of a liquid, sublimation, mixing and diffusion involve an increase in the entropy of the system under consideration.
Answer:
Number of electrons, 
Explanation:
It is given that,
Charge, q = 4.33 C
We need to find the number of electrons that make 4.33 C of charge. According to quantization of charge as :

n = number of electrons
e = electron's charge



So, the number of electrons are
Hence, this is the required solution.
The concept of momentum tells us that it is equivalent to the product between the mass and the velocity of the object, that is to say that in general it can be written as

Where,
m = mass
v = Velocity
Our values are given as,


Replacing we have that,


Therefore the magniude of the momentum of the pitched baseball is 
To solve this problem it is necessary to apply the concepts related to the Moment. The moment in terms of the Force and the time can be expressed as

F = Force

At the same time the moment can be expressed in terms of mass and velocity, mathematically it can be given as

Where
m = Mass
Change in velocity
Our values are given as

By equating the two equations we can find the Force,



Therefore, the net average force will be:

The negative symbol indicates that the direction of the force is upwards.